簡易檢索 / 詳目顯示

研究生: 賴玉玲
Lay, Ninuk-Liana
論文名稱: 鍛燒溫度對可見光催化二氧化鈦自潔表面特性的影響
Effect of Calcination Temperature on the Properties of Visible-Light-Active TiO2 Self-Cleaning Surfaces
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 85
中文關鍵詞: 鍛燒溫度自潔性質抗反射BA-PW 25MPT-428可見光催化光觸媒二氧化鈦
外文關鍵詞: visible-light-active photocatalyst, calcination temperature, self-cleaning property, BA-PW 25, MPT-428, antireflection, TiO2
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用靜電逐層(ELbL)組裝技術製備一透明且為可見光激發自潔表面。薄膜為商用鐵離子掺雜的二氧化鈦,MPT-428,搭配二氧化矽奈米粒子,利用靜電逐層組裝製備而成。另一方面,利用旋轉塗佈法將商用氮掺雜的二氧化鈦,BA-PW 25,製備成可見光激發二氧化鈦自潔表面。所有薄膜最後皆在空氣下經過四種不同溫度的鍛燒,藉此研究熱處理溫度在薄膜特性與自潔效能上的影響。
    實驗結果顯示利用靜電逐層組裝所製備而成之透明且自潔的表面具有線性成長、高穿透度、低折射率與均勻表面形態的特性。雙層數目最高且鍛燒溫度最低的薄膜展現了最佳的光催化活性與表面潤濕永續性,其中光催化活性及表面潤濕永續性是分別藉由可見光燈源照射下亞甲基藍的降解及水滴接觸角隨暗處存放天數變化的實驗結果判定。但是利用旋轉塗佈法所製備的可見光激發二氧化鈦自潔表面形態較不均勻,鍛燒溫度對光催化活性與表面潤濕永續性的影響也不顯著。但自潔表面的接觸角在經過暗處存放20天後依然可以維持在10度以下。

    Transparent and self-cleaning surfaces in this work are defined as surfaces with visible-light-active, antireflective, and self-cleaning properties. They were prepared by electrostatic layer-by-layer (ELbL) assembly technique using MPT-428 particles, which are commercial Fe-doped TiO2 photocatalyst, and SiO2 nanoparticles. On the other hand, self-cleaning surfaces in this work were prepared by spin coating method using BA-PW 25 particles, which are commercial nitrogen-doped TiO2 photocatalyst. All the thin films were calcinated with four different calcination temperatures under air to study the effect of calcination temperature on the characteristics of the thin films.
    The experimental results revealed that the transparent and self-cleaning surfaces fabricated by ELbL assembly have linear growth behavior, high transmittance, low refractive index and uniform surface morphology. The photocatalytic activity and surface wetting sustainability of all the thin films were evaluated by monitoring the absorbance of methylene blue adsorbed thin film during visible light illumination and by measuring the change of water contact angle with dark storage time, respectively. The best photocatalytic activity and surface wetting sustainability of the transparent and self-cleaning surfaces can be realized by the highest number of bilayer and the lowest calcination temperature. On the other hand, the self-cleaning surfaces indicated visible-light-active photocatalysis but nonuniform surface morphology. Experimental results also revealed that the calcination temperature had insignificant effect on the photocatalytic activity and surface wetting sustainability of self-cleaning surfaces. However, the self-cleaning surfaces can maintain water contact angle less than 10o even after storing in the dark place for 20 days.

    ABSTRACT (English) I ABSTRACT (Chinese) II ACKNOWLEDGEMENT III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES XI CHAPTER 1 INTRODUCTION 1 1.1 Research background 1 1.2 Research motivation 2 CHAPTER 2 LITERATURE REVIEW 3 2.1 Titanium dioxide properties 3 2.1.1 Principle of self-cleaning surfaces 4 2.1.2 Visible light titanium dioxide 9 2.1.2.1 Metal doping titanium dioxide 10 2.1.2.2 Non-metal doping titanium dioxide 13 2.2 Antireflection property 15 2.2.1 Antireflection principle 16 2.2.2 Fabrication of antireflection thin film 17 2.3 Electrostatic layer by layer assembly 18 2.4 Effect of calcination temperature 21 2.4.1 Effect of calcination temperature on the properties of TiO2 thin films 21 2.4.2 Effect of calcination temperature on the properties of visible-light-active TiO2 thin films 23 CHAPTER 3 MATERIALS AND METHODS 26 3.1 Materials 26 3.2 Experiment instuments 28 3.3 Experiment analysis 31 3.4 Experimental method 36 3.4.1 Glass substrate cleaning 36 3.4.2 Fabrication of the transparent and self-cleaning surfaces 36 3.4.3 Fabrication of the self-cleaning surfaces 37 3.4.3 Photocatalysis experiment 37 3.4.3 Sustained effect experiment 37 CHAPTER 4 RESULTS AND DISCUSSION 38 4.1 Transparent and self-cleaning surfaces 38 4.1.1 Characteristics of TiO2 and SiO2 solutions 38 4.1.2 Optical properties of transparent and self-cleaning surfaces 39 4.1.2.1 Effect of the number of bilayer and calcination temperature on the transmittance of transparent and self-cleaning surfaces 39 4.1.2.2 Effect of the number of bilayer and calcination temperature on the absorbance of transparent and self-cleaning surfaces 41 4.1.3 Effect of calcination temperature on the crystal size of MPT-428 43 4.1.4 Surface morphology of transparent and self-cleaning surfaces 45 4.1.4.1 Effect of the number of bilayer on the surface morphology of transparent and self-cleaning surfaces 45 4.1.4.2 Effect of calcination temperature on the surface morphology of transparent and self-cleaning surfaces 45 4.1.5 The thickness of transparent and self-cleaning surfaces 47 4.1.5.1 Effect of the number of bilayer on thickness of transparent and self-cleaning surfaces 47 4.1.5.2 Effect of calcination temperature on thickness of transparent and self-cleaning surfaces 48 4.1.6 The optical constants analysis of transparent and self-cleaning surfaces 50 4.1.6.1 Effect of the number of bilayer on the optical constants of transparent and self-cleaning surfaces 51 4.1.6.2 Effect of calcination temperature on the optical constants of transparent and self-cleaning surfaces 51 4.1.7 Effect of calcination temperature on the element component of transparent and self-cleaning surfaces 54 4.1.8 Photocatalytic acvtity of transparent and self-cleaning surfaces 56 4.1.8.1 Effect of the number of bilayer on the adsorption of methylene blue solution of transparent and self-cleaning surfaces 58 4.1.8.2 Effect of calcination temperature on the adsorption of methylene blue solution of transparent and self-cleaning surfaces 58 4.1.8.3 Effect of the number of bilayer on the photodegradation of methylene blue solution 61 4.1.8.4 Effect of calcination temperature on the photodegradation of methylene blue solution 61 4.1.9 Surface wetting sustainability of transparent and self-cleaning surfaces 63 4.1.9.1 Effect of the number of bilayer on the surface wetting sustainability of transparent and self-cleaning surfaces 64 4.1.9.2 Effect on calcination temperature to the surface wetting sustainability of transparent and self-cleaning surfaces 64 4.2 Self-Cleaning Surfaces 67 4.2.1 Characteristics of BA-PW 25 sol 67 4.2.2 Effect calcination temperature on the absorbance of self-cleaning surfaces 67 4.2.3 Effect of calcination temperature on the crystal size of BA-PW 25 68 4.2.4 Effect of calcination temperature on the surface morphology of self-cleaning surfaces 70 4.2.5 Effect of calcination temperature on the element component of self-cleaning surfaces 71 4.2.6 Photocatalytic acvtity of self-cleaning surfaces 73 4.2.6.1 Effect of calcination temperature on the adsorption of methylene blue solution of self-cleaning surfaces 73 4.2.6.2 Effect of calcination temperature on the photodegradation of methylene blue solution 73 4.2.7 Effect on calcination temperature to the surface wetting sustainability of self-cleaning surfaces 75 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 77 5.1 Conclusions 77 5.2 Suggestions 78 REFERENCES 79 ABOUT AUTHOR 85

    Ariga, K., Hill, J.P., Ji, Q., “Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application,” Phys. Chem. Chem. Phys., 9, 2319-2340 (2007)
    Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, 293, 269-271 (2001)
    Chen, D., “Anti-reflection (AR) coatings made by sol-gel processes: A review,” Solar Energy Materials & Solar Cells, 68, 313-336 (2001)
    Choi, W., Termin, A., Hoffmann, M.R., “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics,” J. Phys. Chem., 98, 13669-13679 (1994)
    Decher, G., “Fuzzy nanoassemblies : toward layered polymeric multicomposites,” Science, 277, 1232-1237 (1997)
    Diebold, U., “The surface science of titanium dioxide,” Surface Science Reports, 48, 53-229 (2003)
    Fujishima, A. and Zhang, X., “Titanium dioxide photocatalysis: present situation and future approaches,” C. R. Chimie 9, 750-760 (2006)
    Fujishima, A., Rao, T.N., Tryk, D.A., “Titanium dioxide photocatalysis,” J. Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21 (2000)
    Gao, S.A., Xian, A.P., Cao, L.H., Xie, R.C., Shang, J.K., “Influence of calcining temperature on photoresponse of TiO2 film under nitrogen and oxygen in room,” Sensors and Actuators B, 134, 718-726 (2008)
    Guan, K., “Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films,” Surface and Coatings Technology, 191, 155-160 (2005)

    Guan, K., Lu, B., Yin, Y., “Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films,” Surface and Coatings Technology, 173, 219-223 (2003)
    Habibi, M.H, Talebian, N., Choi, J.H, “The effect of annealing on photocatalytic properties on nanostructured titanium dioxide thin films,” Dyes and Pigments, 73, 103-110 (2007)
    Hasan, M.M, Haseeb, A.S.M.A., Saidur, R., Masjuki, H.H., “Effects of annealing treatment on optical properties of anatase TiO2 thin films,” Proceedings of World Academy of Science, Engineering and Technology, 30, 1307-6884 (2008)
    Hashimoto, K., Irie, H., Fujishima, A., “TiO2 Photocatalysis: A historical overview and future prospects,” Japanese J. Applied Phys., 44, 8269-8285 (2005)
    Hou, Y.Q., Zhuang, D.M., Zhang, G., Zhao, M., Wu, M.S., “Influence of annealing temperature on the properties of titanium oxide thin film,” Applied Surface Science, 218, 97-105 (2003)
    Hwang, K.S., Jeong, J.H, Jeon, Y.S., Jeon, K.O., Kim, B.H., “Preparation of titanium oxide layer on silica glass substrate with titanium naphthenate precursor,” J. Sol-Gel Science and Technology, 35, 237-243 (2005)
    Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O., Sugihara, S., “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Applied Catalysis B: Environmental, 42, 403-409 (2003)
    Irie,H., Watanabe,Y., Hashimoto, K., “Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders,” J. Phys. Chem. B, 107, 5483-5486 (2003)
    Langlet, M., Permpoon, S., Riassetto, D., Berthome, G., Pernot, E., Joud, J.C., “Photocatalytic activity and photo-induced superhydrophilicity of sol-gel derived TiO2 films,” J. Photochemistry and Photobiology A: Chemistry, 181, 203-214 (2006)
    Lee, D., Omolade, D., Cohen, R.E., Rubner, M.F., “pH-dependent structure and properties of TiO2/SiO2 nanoparticle multilayer thin films,” Chem. Mater., 19, 1427-1433 (2007)
    Lee, D., Rubner, M.F., Cohen, R.E., “All-nanoparticle thin-film coatings,” Nano Lett., 6, 2305-2312 (2006)
    Lee, F.K., Andeatta, G., Benattar, J.J., “Role of water adsorption in photoinduced superhydrophilicity on TiO2 films,“ Applied Phys. Lett., 90, 181928 (2007)
    Lee, H.J., Hahn, S.H., Kim, E.J., You, Y.Z., “Influence of calcination temperature structural and optical properties of TiO2-SiO2 thin films prepared by sol-gel dip coating,” J. Materials Science, 39, 3683-3688 (2004)
    Lee, S.K., Mills, A., “Novel photochemistry of leuco-methylene blue,” Chem. Commun., 2366-2367 (2003)
    Liu, J.W., Zheng, Z.X ., Zuo, K.H., Wu, Y.C., “Preparation and characterization of Fe3+-doped nanometer TiO2 photocatalyst,” J. Wuhan University of Technology – Mater. Sci. Ed., 21, 57-60 (2006)
    Mills, A., Wang, J., “Photobleaching of methylene blue sensitized by TiO2: an ambiguous system?,” J. Photochemistry and Photobiology A: Chemistry, 127, 123-134 (1999)
    Mitzi, D.B., “Thin-film deposition of organic-inorganic hybrid materials,” Chem. Mater., 13, 3283-3298 (2001)
    Miyauchi, M., Ikezawa, A., Tobimatsu, H., Irie H., Hashimoto, K., “Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films,” Phys. Chem. Chem. Phys., 6, 865-870 (2004)
    Nakamura, I., Negishi, N., Kutsuna, S., Ihara, T., Sugihara, S., Takeuchi, K., “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Molecular Catalysis A: Chemical, 161, 205-212 (2000)
    Nakamura, I., Sugihara, S., Takeuchi, K., “Mechanism for NO photooxidation over the oxygen-deficient TiO2 powder under visible light irradiation,” Chem. Lett, 1276-1277 (2000)
    Parkin, I.P. and Palgrave, R.G., “Self-cleaning coatings,” J. Mater. Chem., 15, 1689-1695 (2005)
    Permpoon, S., Hourmard, M., Riassetto, D., Rapenee, L., Berthome, G., Baroux, B., Joud, J.C., Langlet, M., “Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 bi-layer films,” Thin Solid Films, 516, 957-966, (2008)
    Sano, T., Puzenat, E., Guillard, C., Geantet, C., Matsuzawa, S., “Degradation of C2H2 with modified-TiO2 photocatalystsunder visible light irradiation,” J. Molecular Catalysis A: Chemical, 284, 127-133 (2008)
    Stathatos, E., Lianos, P., Tsakiroglou, C., “Metachromatic effects and photodegradation of basic blue on nanocrystalline titania films,” Langmuir, 20, 9103-9107 (2004)
    Sun, R.D., Nakajima, A., Fujishima, A., Watanabe, T., Hashimoto, K., “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B, 105, 1984-1990 (2001)
    Surovtseva, N.I., Eremenko,A.M., Smirnova, N.P., Pokrovskii, V.A., Fesenko, T.V., Starukh, G.N., “The effect of nanosized titania-silica film composition on the photostability of adsorbed methylene blue dye,” Theoritical and Experimental Chemisty, 43, No 4, 235-239 (2007)
    Tanaka, Y. and Suganuma, M., “Effects of heat treatment on photocatalytic property of sol-gel derived polycrystalline TiO2,” J. Sol-Gel Science and Technology, 22, 83-89 (2001)
    Tryba, B., “Increase of the photocatalytic activity of TiO2 by carbon and iron modifications,“ Int. J. Photoenergy (2008)
    Tseng, Y.H., Kuo, C. H., Huang, C.H., Li, Y.Y., Chou, P.C., Cheng, C.L., Wong, M.S., “Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity,” Nanotechnology, 17, 2490–2497 (2006)
    University of Colorado, http://ruby.colorado.edu/~smyth/min/tio2.html (1997)
    Wang, J., Zhu, W., Zhang, Y., Liu, S., “An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: visible-light-induced photodecomposition of methylene blue,” J. Phys. Chem. C, 111, 1010-1014 (2007)
    Wang, Z., Gong, W., Hong, X., Cai, W., Jiang, J., Zhou, B., “Preparation, characterization and visible light photocatalytic activity of nitrogen-doped TiO2,” J. Wuhan University of Technology – Mater. Sci. Ed., 21, 71-77 (2006)
    WebElements, http://www.webelements.com/compounds/titanium/titanium_dioxide.html (2009)
    Wu, Z., Dong, F., Zhao, W., Guo, S., “Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride,” J. Hazardous Materials, 157, 57-63 (2008)
    Yamada, K., Yamane, H., Matsushima, S., Nakamura, H., Ohira, K., Kouya, M., Kumada, K., “Effect of thermal treatment on photocatalytic activity of N-doped TiO2 particles under visible light,” Thin Solid Films, 516, 7428-7487 (2008)
    Yan, X., Ohno, T., Nishijima, K., Abe,. R., Ohtani, B., “Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania,” Chem. Phys. Lett., 429, 606-610 (2006)
    Yoldas, B.E., “Investigations of porous oxides as an antireflective coating for glass surfaces,” Applied Optics 19, 9, 1425-1429 (1980)
    Yu, J., Yu, K.C., Hoa, W., Jianga, Z., “Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films,” New J. Chem., 26, 607-613 (2002)
    Zhang, H., Liu, H., Mu, C., Qiu, C., Wu, D., “Antibacterial properties of nanometer Fe3+-TiO2 thin films,” Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 955-958 (2006)
    Zhang, X.T., Fujishima, A., Jin, M., Emeline, A.V., Murakami, T., “Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties,” J. Phys. Chem. B, 110, 25142-25148 (2006)
    Zhang, X.T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., Fujishima, A., “Self-cleaning particle coating with antireflection properties,” Chem. Mater., 17, 696-700 (2005)
    Zhou, L., Tan, X., Zhao, L., Sun, M., “Photocatalytic oxidation of NOx over visible-light-responsive nitrogen-doped TiO2,” Korean J. Chem. Eng., 24 (6), 1017-1021 (2007)
    Zhou, M., Yu, J., Cheng, B., “Effect of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method,” J. Hazardous Materials B, 137, 1838-1847 (2006)
    吳伊旎 ,『透明可見光催化二氧化鈦自潔表面的製備與鑑定』,成功大學化工系碩士論文 (2008)
    林書玄,『具抗反射性質的超親水自潔表面之設計與製備』,成功大學化工系碩士論文 (2008)

    下載圖示 校內:2010-07-13公開
    校外:2010-07-13公開
    QR CODE