| 研究生: |
謝璧晃 Hsieh, Bi-Huang |
|---|---|
| 論文名稱: |
氨氣自動監測儀與氣固分離器採樣之差異研究 The difference between automatic ammonia monitor and annular denuder sampling |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 氨氣 、自動監測儀 、同心圓管氣固分離器 、平行比對 |
| 外文關鍵詞: | ammonia, automatic ammonia monitor, annular denuder |
| 相關次數: | 點閱:86 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣中氣態汙染物大部分為酸性氣體,如硫酸、硝酸及亞硝酸,而氨氣在大氣中則扮演一個相當重要的鹼性氣體,而硝酸銨及硫酸銨為台灣PM2.5中的主要物質,故能正確量測形成這些汙染物的前驅物”氨氣”就是相當重要的課題。
本研究預期比對人工採樣以及連續自動監測儀的差異,手動採樣的部分利用同心圓管氣固分離器收集周界中的氨氣;而連續自動監測儀則以本研究自行設計的氨氣轉化器搭配NOx連續自動監測儀。人工採樣的部分塗敷檸檬酸的同心圓管對氨氣在700 μg的收集量內有90%的收集效率;而塗敷碳酸鉀的同心圓管對亞硝酸、硝酸的吸附量分別在20 μg、55 μg以內有90%收集效率。自動監測數據的部分使用兩組大小不同的轉化管柱,並分別測試轉化溫度以及停留時間對氨氣轉化率的影響。
連續比對結果人工採樣數據皆略高於自動監測儀數據,平均分別為7.6 ppbv與15.3 ppbv,造成此差距的原因可能是周界中的一氧化氮和尚未氧化為NOx的氨氣產生反應生成氮氣,而由結果可發現數據差值越大的日期該筆的一氧化氮濃度也會相對較高。
Most of gaseous pollutants in the atmosphere are acid gases, such as sulfuric acid, nitric acid and nitrous acid, while ammonia is an important alkaline gas in the atmosphere. Ammonium nitrate and ammonium sulfate are the main material of fine particle in Taiwan; therefore, to measure ammonia correctly which is the precursor pollutant of the ammonium nitrate and ammonium sulfate is a very important issue.
This study expect to compare the differences between manual sampling and continuous automatic monitor. In the manual sampling method, we used the annual denuder to collect ammonia; on the other hand, we designed an ammonia converter to equip with the NOx continuous automatic monitor. We will coat two kind of agent in different denuders, one is citric acid and the other is potassium carbonate. For denuder coating citric acid, if the ammonia adsorption capacity is under 700μg, the collection efficiency can exceed 90% and for denuder coating potassium carbonate, if the nitrite and nitrate adsorption capacity is under 20 μg and 50 μg, the collection efficiency can exceed 90%. In automatic sampling method, we used two different size tubes to convert the ammonia gas. Besides, we use different temperature and residence time to see how these two factors will affect the ammonia conversion.
The comparison result shows that the manual sampling data are slightly higher than the continuous monitoring data, the average concentration was 15.3 ppbv and 7.6 ppbv. The reason cause this disparity may be due to the chemical reaction of nitric oxide and ammonia, this reaction will consume the nitric oxide and ammonia to produce the nitrogen. From the comparison results, we can find that the greater the differences between the data in that date, the nitric oxide concentrations will be relatively high.
Baumann, K., F. Ift, et al. (2003). "Discrete measurements of reactive gases and fine particle mass and composition during the 1999 Atlanta Supersite Experiment." Journal of Geophysical Research-Atmospheres 108(D7).
Blanchard, P., P. B. Shepson, et al. (1993). "Development of a Gas-Chromatograph for Trace-Level Measurement of Peroxyacetyl Nitrate Using Chemical Amplification." Analytical Chemistry 65(18): 2472-2477.
Brink, A., P. Kilpinen, et al. (2001). "A simplified kinetic rate expression for describing the oxidation of volatile fuel-N in biomass combustion." Energy & Fuels 15(5): 1094-1099.
Busca, G. and C. Pistarino (2003). "Abatement of ammonia and amines from waste gases: a summary." Journal of Loss Prevention in the Process Industries 16(2): 157-163.
Deppe, J., G. Friedrichs, et al. (1999). "A kinetic study of the reaction of NH2 with NO in the temperature range 1400-2800 K." Physical Chemistry Chemical Physics 1(3): 427-435.
DeSantis, F., I. Allegrini, et al. (1996). "Simultaneous determination of nitrogen dioxide and peroxyacetyl nitrate in ambient atmosphere by carbon-coated annular diffusion denuder." Atmospheric Environment 30(14): 2637-2645.
Duo, W., K. Damjohansen, et al. (1992). "Kinetics of the Gas-Phase Reaction between Nitric-Oxide, Ammonia and Oxygen." Canadian Journal of Chemical Engineering 70(5): 1014-1020.
Finn, D., B. Rumburg, et al. (2001). "Sampling artifacts from the use of denuder tubes with glycerol based coatings in the measurement of atmospheric particulate matter." Environmental Science & Technology 35(1): 40-44.
Fischer, G. and A. U. Nwankwoala (1995). "A Spectroscopic Study of the Thermal-Decomposition of Peroxyacetyl Nitrate (Pan)." Atmospheric Environment 29(22): 3277-3280.
Gardiner, W. C. and D. B. Olson (1980). "Chemical-Kinetics of High-Temperature Combustion." Annual Review of Physical Chemistry 31: 377-399.
Glarborg, P., P. G. Kristensen, et al. (1997). "Branching fraction of the NH2+NO reaction between 1210 and 1370 K." Journal of Physical Chemistry A 101(20): 3741-3745.
Grosjean, E., D. Grosjean, et al. (2002). "Peroxyacetyl nitrate and peroxypropionyl nitrate in Porto Alegre, Brazil." Atmospheric Environment 36(14): 2405-2419.
Keck, L. and K. Wittmaack (2006). "Miniature parallel-plate denuder for the collection of inorganic trace gases and their removal from aerosol-laden air." Journal of Aerosol Science 37(10): 1165-1173.
Li-Jones, X., D. L. Savoie, et al. (2001). "HNO3 losses within the cyclone inlet of a diffusion-denuder system under simulated marine environments." Atmospheric Environment 35(5): 985-993.
Lindstedt, R. P., F. C. Lockwood, et al. (1994). "Detailed Kinetic Modeling of Chemistry and Temperature Effects on Ammonia Oxidation." Combustion Science and Technology 99(4-6): 253-276.
Lindstedt, R. P., F. C. Lockwood, et al. (1995). "A detailed kinetic study of ammonia oxidation." Combustion Science and Technology 108(4-6): 231-254.
Mcconnel.Jc (1973). "Atmospheric Ammonia." Journal of Geophysical Research 78(33): 7812-7821.
Neuman, J. A., R. S. Gao, et al. (2001). "In situ measurements of HNO3, NOy, NO, and O-3 in the lower stratosphere and upper troposphere." Atmospheric Environment 35(33): 5789-5797.
Nielsen, T., A. H. Egelov, et al. (1995). "Observations on Particulate Organic Nitrates and Unidentified Components of Noy." Atmospheric Environment 29(15): 1757-1769.
Norstrom, T., P. Kilpinen, et al. (2000). "Comparisons of the validity of different simplified NH3-oxidation mechanisms for combustion of biomass." Energy & Fuels 14(5): 947-952.
Pang, Y. B., N. L. Eatough, et al. (2002). "Evaluation of the performance of annular denuder samplers." Aerosol Science and Technology 36(6): 790-798.
Perrino, C. and M. Gherardi (1999). "Optimization of the coating layer for the measurement of ammonia by diffusion denuders." Atmospheric Environment 33(28): 4579-4587.
Perrino, C., D. Ramirez, et al. (2001). "Monitoring acidic air pollutants near Rome by means of diffusion lines: development of a specific quality control procedure." Atmospheric Environment 35(2): 331-341.
Sakamoto, K., R. Ortiz, et al. (2009). "Experimental testing of an annular denuder and filter system to measure gas-particle partitioning of semivolatile bifunctional carbonyls in the atmosphere." Atmospheric Environment 43(2): 382-388.
Silver, J. A. and C. E. Kolb (1982). "Kinetic Measurements for the Reaction of NH2 + No over the Temperature-Range 294-1215-K." Journal of Physical Chemistry 86(16): 3240-3246.
Skreiberg, O., P. Kilpinen, et al. (2004). "Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor." Combustion and Flame 136(4): 501-518.
Song, S. H., R. K. Hanson, et al. (2002). "A shock tube study of the product branching ratio of the NH2+NO reaction at high temperatures." Journal of Physical Chemistry A 106(40): 9233-9235.
Sullivan, N., A. Jensen, et al. (2002). "Ammonia conversion and NOX formation in laminar coflowing nonpremixed methane-air flames." Combustion and Flame 131(3): 285-298.
Zabetta, E. C., P. Kilpinen, et al. (2000). "Kinetic modeling study on the potential of staged combustion in gas turbines for the reduction of nitrogen oxide emissions from biomass IGCC plants (vol 14, pg 751, 2000)." Energy & Fuels 14(6): 1335-1335.
Zieba, M., A. Brink, et al. (2009). "Ammonia chemistry in a flameless jet." Combustion and Flame 156(10): 1950-1956.