簡易檢索 / 詳目顯示

研究生: 高源澤
Kao, Yuan-Tse
論文名稱: 氧化銅-硫化銅核殼奈米線之合成及其光催化性質研究
Synthesis and Photocatalytic Properties of CuO-CuS Core-shell Nanowires
指導教授: 呂國彰
Lu, Kuo-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 氧化銅硫化銅核殼奈米線光催化二次退火
外文關鍵詞: copper oxide, copper sulfide, core-shell nanowires, photocatalyst, two-step annealing
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是使用水平式三區真空爐管,以熱氧化法製備氧化銅奈米線,藉由觀察溫度、持溫時間、升溫速率,以及氧氣分壓等四個參數的形貌變化,可以推論出一個應力釋放的生長機制,奈米線的生長取決於熱應力累積的速率。我們也針對CuO奈米線進行性質的改良,以純硫粉進行二次退火的實驗,成功合成出CuO-CuS核殼奈米線結構。研究中以SEM、XRD做初步的鑑定,並透過TEM的高解析影像以及STEM mode的line scanning確認其核殼奈米線結構,最後針對CuO-CuS核殼奈米線以及CuO奈米線進行簡易的光催化降解實驗以及電性量測,以LED燈照光4小時後,CuO-CuS核殼奈米線的亞甲基藍降解率為89%較CuO奈米線的67%提升了22%,說明此結構對於光催化是有幫助的,有潛力應用於可見光光降解。

    In this study, a simple and inexpensive way to synthesize CuO-CuS core-shell nanowires by two-step annealing process was reported. CuO nanowires were prepared on copper foil via thermal oxidation in a three-zone horizontal tube furnace. In order to get larger surface area, we adjusted four processing parameters to improve the aspect ratio and number density of CuO nanowires. A second-step annealing process was conducted to synthesize CuO-CuS core-shell nanowires by sulfur powder under low pressure. SEM and XRD were used to investigate the morphology and crystal structure of nanowires. TEM analysis, including HR-TEM, SAED, EDS, STEM line scanning, was used to identify the core-shell structure of nanowire, and confirm the composition of core and shell respectively. The photocatalytic properties were evaluated by the degradation of methylene blue (MB) under visible light irradiation. Compare CuO-CuS core-shell nanowires with CuO nanowires, the 4-hour degradation rate are 89% and 67%, respectively. The results demonstrated CuO-CuS core-shell nanowires have a promising application in photocatalyst.

    總目錄 摘要 …………………………………………………………………...……………...I Extended Abstract ............................................................................II 致謝 ……………………………………………………………………...…………X 總目錄.........................................................................................XI 圖目錄 ….…………………………………………………………………………XIV 第一章 前言 …………………………………………………………………………1 第二章 文獻回顧與理論基礎 ………………………………………………………2 2-1 奈米科技 …………………………………………………………………...2 2-2 奈米材料特性 ……………………………………………………………...3 2-2-1 力學性質 ………………………………………………...…………3 2-2-2 熱學性質 ………………………………………………...…………3 2-2-3 磁學性質 ………………………………………………...…………4 2-2-4 電學性質 ………………………………………………...…………4 2-2-5 光學性質 …………………………………...………………………4 2-3 氧化銅之結構與特性 ………………......……………………………...5 2-4 氧化銅的應用 ………………………………………….…………………..6 2-4-1光觸媒(Photocatalyst)....................................................................6 2-4-2 電阻式記憶體(Resistive Random Access Memory) ………………..6 2-4-3 氣體感測器... …….....……………………………………………….7 2-5 氧化銅奈米線的生長方法 ………………………………………………..8 2-5-1 模板法(Template Method) …………………………………………8 2-5-2 水熱法(Hydrothermal Method) …………………………….……….8 2-5-3 熱氧化法(Thermal Oxidation Method) ……………………….…….9 第三章 實驗方法 ………………………………………..…………………………11 3-1 實驗材料及藥品 ……………….....................................................…………11 3-2 實驗流程.....................................................................................................12 3-2-1 基板裁切與清洗...................................................................................12 3-2-2 熱氧化法製備氧化銅奈米線...............................................................12 3-2-3 CuO-CuS核殼奈米線之製備................................................................13 3-2-4 光催化性質分析...................................................................................14 3-2-5 電性量測元件製作...............................................................................15 3-3 實驗設備 ………………………………….……………………………....…16 3-2-1 氣氛退火系統 ……………………………………………………….16 3-2-2 電子束蒸鍍機(E-beam Evaporator) ……………………………16 3-2-3 雙束型聚焦離子束(Dual-Beam Focused Ion Beam) …......................17 3-4 分析儀器 …………………………………………………………………….18 3-3-1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) ……….....18 3-3-2 穿透式電子顯微鏡(Transmission Electron Microscope ,TEM) …….20 3-3-3 X光繞射分析儀(X-Ray Diffractometer,XRD) ..…………….……….22 3-3-4 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) …………23 3-3-5 拉曼光譜儀(Raman Spectroscopy) …………...……………………...23 3-4-6 紫外光/可見光分光光譜儀(UV/VIS spectrometers)...........................24 3-4-7 電性量測系統(Electronic Measurement System).................................25 第四章 結果與討論…………………………………………………………………26 4-1 成長參數對氧化銅奈米線的影響 ……………………………………….…26 4-1-1 生長溫度之影響 ………….…………………...…………………….26 4-1-2 持溫時間之影響 …………………………………………………….34 4-1-3 升溫速率之影響 …………………………………………………….39 4-1-4 氧氣分壓之影響 …………………………………………………….42 4-1-5 拉曼光譜分析.......................................................................................45 4-1-6 成長機制 …………………………………….…………………….46 4-2 CuO-CuS核殼奈米線之合成 ......……………………………………………49 4-2-1 硫退火之氧化銅奈米線分析.......................…………………………49 4-2-2 CuO-CuS核殼奈米線之TEM分析………………………………53 4-3 性質量測 ……………………………………………………………………56 4-3-1 光降解性質量測...……………………………………………………56 4-3-2 電性量測 ……………………………………………………………62 第五章 結論 ………………………………………………………………………67 參考文獻 ……………………………………………………………………………68 圖目錄 圖2-1、CuO晶體結構..........................................................................5 圖2-2、單根CuO奈米線氣體感測器對500ppm氣體之response..............7 圖2-3、以模板輔助電鍍法合成CuO奈米線之TEM影像...................8 圖2-4、水熱法合成奈米線經(a)4h (b)32h (c)56h (d)72h脫水反應時間 之TEM影像及XRD圖......................................................9 圖2-5、以熱氧化法在(a)~(d) TEM銅網及(E)~(F)直徑0.1mm銅線上生長 氧化銅奈米線..............................................................................................10 圖3-1、熱氧化法實驗配置圖..................................................................13 圖3-2、硫化銅/氧化銅奈米線異質結構之實驗配置圖...............................14 圖3-3、電子束蒸鍍機運作示意圖............................................................17 圖3-4、雙束型聚焦離子束系統結構圖.......................................................18 圖3-5、SEM結構圖.................................................................................20 圖3-6、CS STEM 結構圖......................................................................21 圖3-7、Bragg’s law示意圖....................................................................22 圖3-8、瑞利及拉曼散射示意圖...............................................................24 圖4-1 (a)~(c)、300℃、350℃、400℃生長之CuO奈米線SEM影像........29 圖4-1 (d)~(e)、450℃、550℃生長之CuO奈米線SEM影像......................30 圖4-1 (f)~(g)、700℃、800℃生長之CuO奈米線SEM影像......................31 圖4-2、不同溫度持溫4小時之XRD圖 ……………………………………32 圖4-3、400℃持溫4小時之氧化銅奈米線之TEM分析 ……………………33 圖4-4、550℃持溫4小時之氧化銅奈米線之TEM分析 ……………………34 圖4-5、設定550℃、零持溫時間生長之表面形貌以及局部放大圖...................36 圖4-6、在550℃進行(a) 1 h (b) 3 h (c) 6 h 的持溫時間之表面形貌.....................37 圖4-7、在550℃進行不同持溫時間之XRD圖 …………………………………38 圖4-8、以(a) 0 h (b) 1 h (c) 2 h (d) 3 h 時間升溫至550℃進行持溫3小時之 CuO奈米線SEM影像.................................................................................40 圖4-9、(a)1 atm (b) 0.5 atm (c) 0.2 atm (d) 0.1 atm氧氣分壓下,以30分鐘升溫至 550℃持溫3小時之氧化銅奈米線...........................................................43 圖4-10、550℃生長之CuO拉曼光譜圖..................................................................46 圖4-11、(a)(b)高倍率SEM影像及(c)橫截面影像.................................................48 圖4-12、氧化銅奈米線成長機制示意圖 …………………………………………48 圖4-13、以200℃進行二次退火之EDS分析.........................................................51 圖4-14、以250℃進行二次退火之EDS分析.........................................................51 圖4-15、以300℃進行二次退火之EDS分析.........................................................52 圖4-16、二次退火實驗前後之XRD圖...................................................................52 圖4-17、CuO-CuS核殼奈米線之低倍率影像、CuO核心之選區繞射圖、CuS 殼層之FFT圖以及HR-TEM分析..............................................................54 圖4-18、CuO-CuS奈米線核心之EDS分析.........................................................55 圖4-19、CuO-CuS奈米線殼層之EDS分析..........................................................55 圖4-20、CuO-CuS核殼奈米線之line scan 分析及HAADF影像....................55 圖4-21、CuO-CuS核殼奈米線之生長示意圖.......................................................56 圖4-22、光降解亞甲基藍溶液之UV-Vis光譜吸收率比較.................................58 圖4-23、無添加催化劑隨照光時間之亞甲基藍溶液吸收光譜.............................58 圖4-24、CuO奈米線隨照光時間之亞甲基藍溶液吸收光譜................................59 圖4-25、CuO-CuS核殼奈米線隨照光時間之亞甲基藍溶液吸收光譜................59 圖4-26、C/C0隨時間變化圖....................................................................................60 圖4-27、ln(C0/C)隨時間變化圖...............................................................................60 圖4-28、由左而右依序為無催化劑、CuO奈米線、CuO-CuS核殼奈米線經光照 4小時之亞甲基藍溶液顏色變化............................................................61 圖4-29、光生電子電洞遷移示意圖......................................................................61 圖4-30、30分鐘/550℃/3小時生長之CuO奈米線之I-V曲線......................63 圖4-31、0.1atm O2/30分鐘/550℃/3小時生長之CuO奈米線之I-V曲線....64 圖4-32、CuO-CuS核殼奈米線之I-V曲線..................………………………64 圖4-33、電阻隨溫度的變化趨勢圖……………...............………………………65 圖4-34、30分鐘/550℃/3小時生長之CuO奈米線之SEM長寬量測........65 圖4-35、0.1atm O2/30分鐘/550℃/3小時生長之CuO奈米線之SEM長寬量測66 圖4-36、CuO-CuS核殼奈米線之SEM長寬量測...............................................66

    1. Wu, Z. and D. Zhao, Ordered mesoporous materials as adsorbents. Chemical Communications, 2011. 47(12): p. 3332-3338.
    2. Sun, L., et al., Magnetically separable porous graphitic carbon with large surface area as excellent adsorbents for metal ions and dye. Journal of Materials Chemistry, 2011. 21(20): p. 7232-7239.
    3. Wang, W., et al., A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. CrystEngComm, 2012. 14(18): p. 5914-5922.
    4. Rao, M.P., et al., Simple and low-cost synthesis of CuO nanosheets for visible-light-driven photocatalytic degradation of textile dyes. Journal of Environmental Chemical Engineering, 2018. 6(2): p. 2003-2010.
    5. Umadevi, M. and A.J. Christy, Synthesis, characterization and photocatalytic activity of CuO nanoflowers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 109: p. 133-137.
    6. Rao, M.P., et al., Photocatalytic degradation of tartrazine dye using CuO straw-sheaf-like nanostructures. Water Science and Technology, 2017. 75(6): p. 1421-1430.
    7. Wang, X., et al., Surfactant-free synthesis of CuO with controllable morphologies and enhanced photocatalytic property. Nanoscale research letters, 2016. 11(1): p. 125.
    8. Liu, R., et al., Monodisperse CuO Hard and Hollow Nanospheres as Visible‐Light Photocatalysts. European Journal of Inorganic Chemistry, 2013. 2013(8): p. 1358-1362.
    9. Liu, J., et al., Tailoring CuO nanostructures for enhanced photocatalytic property. Journal of colloid and interface science, 2012. 384(1): p. 1-9.
    10. Sherly, E., J.J. Vijaya, and L.J. Kennedy, Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2, 4-dichlorophenol. Chinese Journal of Catalysis, 2015. 36(8): p. 1263-1272.
    11. Moniz, S.J. and J. Tang, Charge Transfer and Photocatalytic Activity in CuO/TiO2 Nanoparticle Heterojunctions Synthesised through a Rapid, One‐Pot, Microwave Solvothermal Route. ChemCatChem, 2015. 7(11): p. 1659-1667.
    12. Malwal, D. and P. Gopinath, Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@ CuO nanostructures towards the degradation of Congo red dye under solar radiation. Catalysis Science & Technology, 2016. 6(12): p. 4458-4472.
    13. Ghijsen, J., et al., Electronic structure of Cu 2 O and CuO. Physical Review B, 1988. 38(16): p. 11322.
    14. Xu, X., H. Yang, and Y. Liu, Self-assembled structures of CuO primary crystals synthesized from Cu (CH 3 COO) 2–NaOH aqueous systems. CrystEngComm, 2012. 14(16): p. 5289-5298.
    15. Dong, R., et al., Reproducible hysteresis and resistive switching in metal-Cu x O-metal heterostructures. Applied physics letters, 2007. 90(4): p. 042107.
    16. Liang, K.-D., et al., Single CuO x nanowire memristor: forming-free resistive switching behavior. ACS applied materials & interfaces, 2014. 6(19): p. 16537-16544.
    17. Yasuhara, R., et al., Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure. Applied Physics Letters, 2009. 95(1): p. 012110.
    18. Hong, Y.-S., et al., Single-crystalline CuO nanowires for resistive random access memory applications. Applied Physics Letters, 2015. 106(17): p. 173103.
    19. Huang, J. and Q. Wan, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors, 2009. 9(12): p. 9903-9924.
    20. Steinhauer, S., et al., Gas sensing properties of novel CuO nanowire devices. Sensors and Actuators B: Chemical, 2013. 187: p. 50-57.
    21. Chen, J., et al., H2S detection by vertically aligned CuO nanowire array sensors. The Journal of Physical Chemistry C, 2008. 112(41): p. 16017-16021.
    22. Saranya, M., et al., Hydrothermal growth of CuS nanostructures and its photocatalytic properties. Powder Technology, 2014. 252: p. 25-32.
    23. Liao, L., et al., Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. Nanotechnology, 2009. 20(8): p. 085203.
    24. Li, D., et al., Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology, 2010. 21(48): p. 485502.
    25. Dongliang, Y., G. Chuannan, and D. Youwei, Preparation and characterization of CuO nanowire arrays. Journal of Semiconductors, 2009. 30(7): p. 072003.
    26. Hsieh, C.-T., et al., Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Applied physics letters, 2003. 82(19): p. 3316-3318.
    27. Li, M.-Y., et al., Ionic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires. Journal of Crystal Growth, 2008. 310(21): p. 4628-4634.
    28. Jiang, X., T. Herricks, and Y. Xia, CuO nanowires can be synthesized by heating copper substrates in air. Nano letters, 2002. 2(12): p. 1333-1338.
    29. Wu, F., et al., Indirect phase transformation of CuO to Cu2O on a nanowire surface. Langmuir, 2016. 32(18): p. 4485-4493.
    30. Hughes, M., What is E-Beam Evaporation? 2016.
    31. Yao, N. and A.K. Epstein, Surface nanofabrication using focused ion beam. 2010.
    32. https://nptel.ac.in/courses/115103030/17.
    33. Benner, G., H. Niebel, and G. Pavia, Nano beam diffraction and precession in an energy filtered CS corrected transmission electron microscope. Crystal Research and Technology, 2011. 46(6): p. 580-588.
    34. Sowinska, In-operando hard X-ray photoelectron spectroscopy study on the resistive switching physics of HfO2-based RRAM. 2014, BTU Cottbus-Senftenberg.
    35. https://www.nanophoton.net/raman/raman-spectroscopy.html.
    36. Gonçalves, A., et al., On the growth and electrical characterization of CuO nanowires by thermal oxidation. Journal of Applied Physics, 2009. 106(3): p. 034303.
    37. Chrzanowski, J. and J. Irwin, Raman scattering from cupric oxide. Solid state communications, 1989. 70(1): p. 11-14.
    38. Irwin, J., et al., Raman scattering from single crystals of cupric oxide. Physica C: Superconductivity, 1990. 166(5-6): p. 456-464.
    39. Wang, W., Y. Zhuang, and L. Li, Structure and size effect of CuO nanowires prepared by low temperature solid-phase process. Materials Letters, 2008. 62(10-11): p. 1724-1726.
    40. Solache-Carranco, H., et al. Raman scattering and photoluminescence studies on Cu 2 O. in Electrical Engineering, Computing Science and Automatic Control, 2008. CCE 2008. 5th International Conference on. 2008. IEEE.
    41. Kumar, A., et al., The effect of growth parameters on the aspect ratio and number density of CuO nanorods. Journal of Physics: Condensed Matter, 2004. 16(47): p. 8531.
    42. Low, J., et al., Heterojunction photocatalysts. Advanced Materials, 2017. 29(20): p. 1601694.
    43. Li, F.M., et al., Low temperature (< 100° C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy. Thin Solid Films, 2011. 520(4): p. 1278-1284.
    44. Gonçalves, A., et al., Growth of CuS platelet single crystals by the high-temperature solution growth technique. Journal of Crystal Growth, 2008. 310(11): p. 2742-2745.
    45. Chaki, S., J. Tailor, and M. Deshpande, Covellite CuS–Single crystal growth by chemical vapour transport (CVT) technique and characterization. Materials Science in Semiconductor Processing, 2014. 27: p. 577-585.

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE