| 研究生: |
高源澤 Kao, Yuan-Tse |
|---|---|
| 論文名稱: |
氧化銅-硫化銅核殼奈米線之合成及其光催化性質研究 Synthesis and Photocatalytic Properties of CuO-CuS Core-shell Nanowires |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 氧化銅 、硫化銅 、核殼奈米線 、光催化 、二次退火 |
| 外文關鍵詞: | copper oxide, copper sulfide, core-shell nanowires, photocatalyst, two-step annealing |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是使用水平式三區真空爐管,以熱氧化法製備氧化銅奈米線,藉由觀察溫度、持溫時間、升溫速率,以及氧氣分壓等四個參數的形貌變化,可以推論出一個應力釋放的生長機制,奈米線的生長取決於熱應力累積的速率。我們也針對CuO奈米線進行性質的改良,以純硫粉進行二次退火的實驗,成功合成出CuO-CuS核殼奈米線結構。研究中以SEM、XRD做初步的鑑定,並透過TEM的高解析影像以及STEM mode的line scanning確認其核殼奈米線結構,最後針對CuO-CuS核殼奈米線以及CuO奈米線進行簡易的光催化降解實驗以及電性量測,以LED燈照光4小時後,CuO-CuS核殼奈米線的亞甲基藍降解率為89%較CuO奈米線的67%提升了22%,說明此結構對於光催化是有幫助的,有潛力應用於可見光光降解。
In this study, a simple and inexpensive way to synthesize CuO-CuS core-shell nanowires by two-step annealing process was reported. CuO nanowires were prepared on copper foil via thermal oxidation in a three-zone horizontal tube furnace. In order to get larger surface area, we adjusted four processing parameters to improve the aspect ratio and number density of CuO nanowires. A second-step annealing process was conducted to synthesize CuO-CuS core-shell nanowires by sulfur powder under low pressure. SEM and XRD were used to investigate the morphology and crystal structure of nanowires. TEM analysis, including HR-TEM, SAED, EDS, STEM line scanning, was used to identify the core-shell structure of nanowire, and confirm the composition of core and shell respectively. The photocatalytic properties were evaluated by the degradation of methylene blue (MB) under visible light irradiation. Compare CuO-CuS core-shell nanowires with CuO nanowires, the 4-hour degradation rate are 89% and 67%, respectively. The results demonstrated CuO-CuS core-shell nanowires have a promising application in photocatalyst.
1. Wu, Z. and D. Zhao, Ordered mesoporous materials as adsorbents. Chemical Communications, 2011. 47(12): p. 3332-3338.
2. Sun, L., et al., Magnetically separable porous graphitic carbon with large surface area as excellent adsorbents for metal ions and dye. Journal of Materials Chemistry, 2011. 21(20): p. 7232-7239.
3. Wang, W., et al., A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. CrystEngComm, 2012. 14(18): p. 5914-5922.
4. Rao, M.P., et al., Simple and low-cost synthesis of CuO nanosheets for visible-light-driven photocatalytic degradation of textile dyes. Journal of Environmental Chemical Engineering, 2018. 6(2): p. 2003-2010.
5. Umadevi, M. and A.J. Christy, Synthesis, characterization and photocatalytic activity of CuO nanoflowers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 109: p. 133-137.
6. Rao, M.P., et al., Photocatalytic degradation of tartrazine dye using CuO straw-sheaf-like nanostructures. Water Science and Technology, 2017. 75(6): p. 1421-1430.
7. Wang, X., et al., Surfactant-free synthesis of CuO with controllable morphologies and enhanced photocatalytic property. Nanoscale research letters, 2016. 11(1): p. 125.
8. Liu, R., et al., Monodisperse CuO Hard and Hollow Nanospheres as Visible‐Light Photocatalysts. European Journal of Inorganic Chemistry, 2013. 2013(8): p. 1358-1362.
9. Liu, J., et al., Tailoring CuO nanostructures for enhanced photocatalytic property. Journal of colloid and interface science, 2012. 384(1): p. 1-9.
10. Sherly, E., J.J. Vijaya, and L.J. Kennedy, Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2, 4-dichlorophenol. Chinese Journal of Catalysis, 2015. 36(8): p. 1263-1272.
11. Moniz, S.J. and J. Tang, Charge Transfer and Photocatalytic Activity in CuO/TiO2 Nanoparticle Heterojunctions Synthesised through a Rapid, One‐Pot, Microwave Solvothermal Route. ChemCatChem, 2015. 7(11): p. 1659-1667.
12. Malwal, D. and P. Gopinath, Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@ CuO nanostructures towards the degradation of Congo red dye under solar radiation. Catalysis Science & Technology, 2016. 6(12): p. 4458-4472.
13. Ghijsen, J., et al., Electronic structure of Cu 2 O and CuO. Physical Review B, 1988. 38(16): p. 11322.
14. Xu, X., H. Yang, and Y. Liu, Self-assembled structures of CuO primary crystals synthesized from Cu (CH 3 COO) 2–NaOH aqueous systems. CrystEngComm, 2012. 14(16): p. 5289-5298.
15. Dong, R., et al., Reproducible hysteresis and resistive switching in metal-Cu x O-metal heterostructures. Applied physics letters, 2007. 90(4): p. 042107.
16. Liang, K.-D., et al., Single CuO x nanowire memristor: forming-free resistive switching behavior. ACS applied materials & interfaces, 2014. 6(19): p. 16537-16544.
17. Yasuhara, R., et al., Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure. Applied Physics Letters, 2009. 95(1): p. 012110.
18. Hong, Y.-S., et al., Single-crystalline CuO nanowires for resistive random access memory applications. Applied Physics Letters, 2015. 106(17): p. 173103.
19. Huang, J. and Q. Wan, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors, 2009. 9(12): p. 9903-9924.
20. Steinhauer, S., et al., Gas sensing properties of novel CuO nanowire devices. Sensors and Actuators B: Chemical, 2013. 187: p. 50-57.
21. Chen, J., et al., H2S detection by vertically aligned CuO nanowire array sensors. The Journal of Physical Chemistry C, 2008. 112(41): p. 16017-16021.
22. Saranya, M., et al., Hydrothermal growth of CuS nanostructures and its photocatalytic properties. Powder Technology, 2014. 252: p. 25-32.
23. Liao, L., et al., Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. Nanotechnology, 2009. 20(8): p. 085203.
24. Li, D., et al., Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology, 2010. 21(48): p. 485502.
25. Dongliang, Y., G. Chuannan, and D. Youwei, Preparation and characterization of CuO nanowire arrays. Journal of Semiconductors, 2009. 30(7): p. 072003.
26. Hsieh, C.-T., et al., Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Applied physics letters, 2003. 82(19): p. 3316-3318.
27. Li, M.-Y., et al., Ionic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires. Journal of Crystal Growth, 2008. 310(21): p. 4628-4634.
28. Jiang, X., T. Herricks, and Y. Xia, CuO nanowires can be synthesized by heating copper substrates in air. Nano letters, 2002. 2(12): p. 1333-1338.
29. Wu, F., et al., Indirect phase transformation of CuO to Cu2O on a nanowire surface. Langmuir, 2016. 32(18): p. 4485-4493.
30. Hughes, M., What is E-Beam Evaporation? 2016.
31. Yao, N. and A.K. Epstein, Surface nanofabrication using focused ion beam. 2010.
32. https://nptel.ac.in/courses/115103030/17.
33. Benner, G., H. Niebel, and G. Pavia, Nano beam diffraction and precession in an energy filtered CS corrected transmission electron microscope. Crystal Research and Technology, 2011. 46(6): p. 580-588.
34. Sowinska, In-operando hard X-ray photoelectron spectroscopy study on the resistive switching physics of HfO2-based RRAM. 2014, BTU Cottbus-Senftenberg.
35. https://www.nanophoton.net/raman/raman-spectroscopy.html.
36. Gonçalves, A., et al., On the growth and electrical characterization of CuO nanowires by thermal oxidation. Journal of Applied Physics, 2009. 106(3): p. 034303.
37. Chrzanowski, J. and J. Irwin, Raman scattering from cupric oxide. Solid state communications, 1989. 70(1): p. 11-14.
38. Irwin, J., et al., Raman scattering from single crystals of cupric oxide. Physica C: Superconductivity, 1990. 166(5-6): p. 456-464.
39. Wang, W., Y. Zhuang, and L. Li, Structure and size effect of CuO nanowires prepared by low temperature solid-phase process. Materials Letters, 2008. 62(10-11): p. 1724-1726.
40. Solache-Carranco, H., et al. Raman scattering and photoluminescence studies on Cu 2 O. in Electrical Engineering, Computing Science and Automatic Control, 2008. CCE 2008. 5th International Conference on. 2008. IEEE.
41. Kumar, A., et al., The effect of growth parameters on the aspect ratio and number density of CuO nanorods. Journal of Physics: Condensed Matter, 2004. 16(47): p. 8531.
42. Low, J., et al., Heterojunction photocatalysts. Advanced Materials, 2017. 29(20): p. 1601694.
43. Li, F.M., et al., Low temperature (< 100° C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy. Thin Solid Films, 2011. 520(4): p. 1278-1284.
44. Gonçalves, A., et al., Growth of CuS platelet single crystals by the high-temperature solution growth technique. Journal of Crystal Growth, 2008. 310(11): p. 2742-2745.
45. Chaki, S., J. Tailor, and M. Deshpande, Covellite CuS–Single crystal growth by chemical vapour transport (CVT) technique and characterization. Materials Science in Semiconductor Processing, 2014. 27: p. 577-585.
校內:2023-09-01公開