簡易檢索 / 詳目顯示

研究生: 羅鈺涵
Luo, Yu-Han
論文名稱: 以系統模擬結合樣本平均近似法求解考慮服務水準下之機場報到櫃檯分配問題
Combining System Simulation and Sample Average Approximation to Solve Airport Check-in Counter Allocation Problem with Service Level Constraints
指導教授: 蔡青志
Tsai, Shing-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 51
中文關鍵詞: 機場櫃檯分配問題切面法樣本平均近似法多重可行性驗證程序
外文關鍵詞: Airport, Check-in Counter Allocation Problem, Cutting Plane Method, Sample Average Approximation, Multiple Feasibility Check Procedure
相關次數: 點閱:231下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著出境旅客數增多,機場大廳中發生壅塞的情況也越趨頻繁。而在出境旅客登機前的所有程序當中,報到辦理是花費時間最長的一站。因此,如何能夠在有限資源下使得報到過程更加有效率,是一個極為重要的議題。本研究藉由建構一最佳化模型,希望能在滿足一定的服務水準下,探討航班在不同開櫃時段之開放櫃檯數量,並最小化總開放櫃檯數,達成將有限資源妥善配置又獲得一定程度之旅客服務滿意度的目標。而除了建構最佳化模型之外,本研究也發展一模擬最佳化演算法以進行求解,其結合了系統模擬、樣本平均近似法 (Sample Average Approximation) 與切面法 (Cutting Plane Method) 等方法,希望能有效地改善現有機場中的資源利用情況。
    在後續實驗的部分,本研究透過一個航班例子進行探討,並設定三種情境及不同的參數組合,藉此比較各種方法在不同情況下之績效表現。而除了利用本研究所發展之切面模擬演算法求解以外,也利用了最佳化求解工具 OptQuest 及 Erlang-C 公式 (Erlang-C formula) 一同進行求解及實驗比較。
    當機場中旅客到達模式符合情境一及情境三的設定時,應用切面模擬演算法將能同時得到不錯的平均目標值及可行性機率表現;當旅客到達模式符合情境二的設定時,應用 OptQuest 及 Erlang-C 公式能使平均目標表現較好,但其可行解機率則較不穩定。最後,透過加入多重可行性驗證程序能提升切面模擬演算法的可行性機率表現。

    Prior to boarding for a trip, check-in is the most time-consuming procedure of all. Therefore, it is important to make the check-in procedure more efficient under limited resources. In our research, we decide the number of open counters at different check-in time periods and minimize the total number of open counters under service level constraints by the construction of an optimization model. In addition, we develop a simulation-based optimization algorithm to solve the problem, which combines the cutting plane method and sample average approximation(SAA). In addition to the algorithm we propose, we solve the check-in counter allocation problem via other methods as well, and compare the results with the one via the cutting plane method and SAA. Moreover, we combine the cutting plane method and the multiple feasibility check procedure(MFCP) to improve the performance of the developed algorithm in terms of PFS.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文延伸摘要 . . . . . . . . . . . . . . . . . . . . . . . ii 誌謝. . . . . . . . . . . . . . . . . . . . . . .v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . viii 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . ix 第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景與動機. . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的. . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究對象及範圍. . . . . . . . . . . . . . . . . . . . . 3 1.4 研究架構. . . . . . . . . . . . . . . . . . . . . . . . 3 第二章 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . 5 2.1 報到櫃檯問題之求解方法. . . . . . . . . . . . . . . . . 5 2.2 模擬最佳化(Optimization via Simulation, OvS) . . . . . 8 2.2.1 排序與選擇程序. . . . . . . . . . . . . . . . . . . . 9 2.2.2 多重可行性驗證程序. . . . . . . . . . . . . . . . . .10 2.3 樣本平均近似法 . . . . . . . . . . . . . . . . . . . . 14 2.4 小結 . . . . . . . . . . . . . . . . . . . . . . . . . 16 第三章 研究方法 . . . . . . . . . . . . . . . . . . . . . 18 3.1 資料蒐集與整理 . . . . . . . . . . . . . . . . . . . . 18 3.2 Arena模型. . . . . . . . . . . . . . . . . . . . . . . 20 3.3 最佳化模型 . . . . . . . . . . . . . . . . . . . . . . 23 3.4 樣本平均近似形式 . . . . . . . . . . . . . . . . . . . 28 3.5 模擬最佳化演算法 . . . . . . . . . . . . . . . . . . . 30 3.5.1 報到櫃檯分配問題之切面限制式 . . . . . . . . . . . . 30 3.5.2 切面模擬演算法 . . . . . . . . . . . . . . . . . . . 33 第四章 實驗情境與分析 . . . . . . . . . . . . . . . . . . 36 4.1 實驗評估 . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 實驗情境設定 . . . . . . . . . . . . . . . . . . . . . 38 4.3 實驗結果 . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 情境一:旅客超過半數集中在時段二到達 . . . . . . . . 40 4.3.2 情境二:旅客超過半數集中在時段三到達 . . . . . . . . 41 4.3.3 情境三:旅客集中在時段二及時段三到達 . . . . . . . . 42 4.4 切面法結合多重可行性驗證程序 . . . . . . . . . . . . . 43 第五章 結論及未來研究方向. . . . . . . . . . . . . . . . . 46 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 未來研究方向 . . . . . . . . . . . . . . . . . . . . . 47 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . 48

    Andradóttir, S., & Kim, S. H. (2010). Fully Sequential Procedures for Comparing Constrained Systems via Simulation. Naval Research Logistics (NRL), 57(5), 403-421.
    Atlason, J., Epelman, M. A., & Henderson, S. G. (2004). Call Center Staffing with Simulation and Cutting Plane Methods. Annals of Operations Research, 127(1-4), 333-358.
    Batur, D., & Kim, S. H. (2010). Finding Feasible Systems in the Presence of Constraints on Multiple Performance Measures. ACM Transactions on Modeling and Computer Simulation (TOMACS), 20(3), 1-26.
    Bechhofer, R. E. (1954). A Single-sample Multiple Decision Procedure for Ranking Means of Normal Populations with Known Variances. The Annals of Mathematical Statistics, 25(1), 16-39.
    Bevilacqua, M., & Ciarapica, F. E. (2010, December). Analysis of Check-in Procedure Using Simulation: a Case Study. In Industrial Engineering and Engineering Management (IEEM), 2010 IEEE International Conference on (pp. 1621-1625). IEEE.
    Bruno, G., & Genovese, A. (2010). A Mathematical Model for the Optimization of the Airport Check-in Service Problem. Electronic Notes in Discrete Mathematics, 36, 703-710.
    Cezik, M. T., & L’Ecuyer, P. (2008). Staffing Multiskill Call Centers via Linear Programming and Simulation. Management Science, 54(2), 310-323.
    Chun, H. W., & Mak, R. W. T. (1999). Intelligent Resource Simulation for an Airport Check-in Counter Allocation System. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 29(3), 325-335.
    Gupta, S. S. (1956). On a Decision Rule for a Problem in Ranking Means (Doctoral dissertation). University of North Carolina at Chapel Hill.
    Hong, L. J., & Nelson, B. L. (2009, December). A Brief Introduction to Optimization via Simulation. In Proceedings of the 2009 Winter Simulation Conference (pp. 75-85). Winter Simulation Conference.
    Hsu, C. I., Chao, C. C., & Shih, K. Y. (2012). Dynamic Allocation of Check-in Facilities and Dynamic Assignment of Passengers at Air Terminals. Computers and Industrial Engineering, 63(2), 410-417.
    Kleywegt, A. J., Shapiro, A., & Homem-de-Mello, T. (2002). The Sample Average Approximation Method for Stochastic Discrete Optimization. SIAM Journal on Optimization, 12(2), 479-502.
    Koole, G., & Mandelbaum, A. (2002). Queueing Models of Call Centers: An Introduction. Annals of Operations Research, 113(1-4), 41-59.
    Mujica Mota, M. (2015). Check-in Allocation Improvements Through the Use of a Simulation–optimization Approach. Transportation Research Part A: Policy and Practice, 77, 320-335.
    Özdemir, D., Yücesan, E., & Herer, Y. T. (2013). Multi-location Transshipment Problem with Capacitated Production. European Journal of Operational Research, 226(3), 425-435.
    Park, Y., & Ahn, S. B. (2003). Optimal Assignment for Check-in Counters Based on Passenger Arrival Behaviour at an Airport. Transportation Planning and Technology, 26(5), 397-416.
    Parlar, M., Rodrigues, B., & Sharafali, M. (2013). On the Allocation of Exclusive-use Counters for Airport Check-in Queues: Static vs. Dynamic Policies. Opsearch, 50(3), 433-453.
    Parlar, M., & Sharafali, M. (2008). Dynamic Allocation of Airline Check-in Counters: a Queueing Optimization Approach. Management Science, 54(8), 1410-1424.
    Robbins, T. R., Medeiros, D. J., & Harrison, T. P. (2010, December). Does the Erlang C Model Fit in Real Call Centers?. In Proceedings of the 2010 Winter Simulation Conference (pp. 2853-2864). Winter Simulation Conference.
    Shapiro, A. (1991). Asymptotic Analysis of Stochastic Programs. Annals of Operations Research, 30(1), 169-186.
    Takakuwa, S., & Oyama, T. (2003, December). Modeling People Flow: Simulation Analysis of International Departure Passenger Flows in an Airport Terminal. In Proceedings
    of the 35th conference on Winter simulation: driving innovation (pp. 1627-1634). Winter Simulation Conference.
    Tang, C. H. (2010). A Network Model for Airport Common Use Check-in Counter Assignments. Journal of the Operational Research Society, 61(11), 1607-1618.
    Tsai, S. C., & Zheng, Y. X. (2013). A Simulation Optimization Approach for a Two-echelon Inventory System with Service Level Constraints. European Journal of Operational Research, 229(2), 364-374.
    van Dijk, N. M., & van der Sluis, E. (2006). Check-in Computation and Optimization by Simulation and IP in Combination. European Journal of Operational Research, 171(3), 1152-1168.
    Wang, W., & Ahmed, S. (2008). Sample Average Approximation of Expected Value Constrained Stochastic Programs. Operations Research Letters, 36(5), 515-519.
    Yan, S., Tang, C. H., & Chen, C. H. (2008). Reassignments of Common-use Check-in Counters Following Airport Incidents. Journal of the Operational Research Society, 59(8), 1100-1108.
    Yan, S., Tang, C. H., & Chen, J. H. (2014). Common-use Check-in Counter Reassignments with a Variable Number of Service Lines and Variable Length of Time Window. Journal of the Chinese Institute of Engineers, 37(5), 643-658.
    Yan, S., Tang, C. H., & Chen, M. (2004). A Model and a Solution Algorithm for Airport Common Use Check-in Counter Assignments. Transportation Research Part A: Policy and Practice, 38(2), 101-125.

    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE