| 研究生: |
徐政倫 Hsu, Cheng-Lun |
|---|---|
| 論文名稱: |
探討TAPE-like (TAPE-L) 分子在先天免疫調控及細菌感染之角色 Functional study of TAPE-like (TAPE-L) adaptor in innate immune regulation and bacterial infection |
| 指導教授: |
凌斌
Ling, Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | TAPE分子 、TAPE-L分子 、Toll-like receptor (TLR) 、先天性免疫 |
| 外文關鍵詞: | TBK1-associated protein in endolysosomes (TAPE), TAPE-like (TAPE-L), Toll-like receptor (TLR), innate immunity |
| 相關次數: | 點閱:44 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先天免疫系統偵測病原感染主要藉由Pattern recognition receptors (PRRs),PRR可以辨識外來病原體具高度保留的Pathogen-associated molecular pattern (PAMPs),其中Toll-like receptors (TLRs) 可以偵測細菌入侵並引起下游的免疫發炎反應,目前已經有相當多的文獻探討TLRs如何去活化先天免疫反應的分子機制。我們實驗室之前的研究已經發現一個新的先天免疫調控分子,TAPE會影響TLR3, TLR4, 及RIG-I-like receptors (RLRs) 訊息傳遞,另外,之前實驗室在人類基因體資料庫發現另一個TAPE旁系同源分子,我們將其命名為TAPE-like (TAPE-L)。先前實驗室初步的生化實驗已證實TAPE-L會活化下游的轉錄活化因子NF-κB,並參與細胞表面上的TLRs訊息傳遞路徑,我將進一步地利用基因剃除 (knockout) 小鼠、活體外細胞及人類單核球細胞株THP-1等材料來佐證TAPE-L在先天免疫調控的角色。實驗結果顯示TAPE-L基因默化 (knockdown) 會阻礙TLRs活化下游的NF-κB及發炎性細胞激素表達,在TAPE-L基因剃除細胞中,也可以發現LPS誘發的IκB降解作用及發炎反應都有明顯缺陷,而TAPE-L 基因剔除小鼠對LPS引起的敗血症的抵抗性則顯示TAPE-L 在TLR4訊息傳遞路徑的重要性。另外,我們也發現TAPE-L 基因剃除小鼠較wild type小鼠容易死於格蘭氏陰性菌感染,顯示TAPE-L 在活體內抵抗細菌感染的重要性,此外在細菌刺激下,TAPE-L 缺乏也能觀察到降低的發炎性細胞激素表達量,顯示TAPE-L會參與細菌引起的發炎反應。總結以上實驗結果,無論是在活體外細胞或活體實驗上,我證實了TAPE-L會參與調控細胞表面TLRs訊息活化路徑,同時也發現TAPE-L對於抗細菌免疫機制的重要性。未來的研究將更進一步地探索TAPE-L在細菌感染中其他可能參與的TLRs和PRRs訊息傳遞路徑。
Innate immune recognition of pathogen infection is mainly mediated by pattern recognition receptors (PRRs) upon sensing the pathogen molecular signatures, termed pathogen-associated molecular patterns (PAMPs). Toll-like receptors (TLRs) represent a prototype family of PRRs to detect a variety of microbial components and trigger innate immune defenses. Much attention and progress have focused on understanding the downstream signaling pathways linking TLRs to innate immune activation. Previous work from our lab uncovered an innate immune regulator, called TAPE (TBK1-associated protein in endolysosome), which is involved in TLR3, TLR4, and RIG-I-like receptor signaling pathways. Furthermore, a TAPE paralog protein termed TAPE-like (TAPE-L) was identified by blast analysis. Our preliminary biochemical analyses showed that TAPE-L was a potent NF-қB activator and capable of regulating the surface TLR pathways. We further used gene knockout mice, primary macrophages and THP-1 cells to assess whether TAPE-L functions as an innate immune regulator. Results showed that gene silencing of TAPE-L impaired the activation of NF-κB and inflammatory cytokine production upon TLR agonist stimulation, indicating that TAPE-L was involved in linking surface TLRs signaling to the activation of NF-κB. Tape-l -/- cells also displayed defective LPS-induced IκB degradation and cytokine responses. The resistance to LPS-induced sepsis in Tape-l -/- mice supports the in vivo role of TAPE-L in TLR4 signaling. Furthermore, Tape-l -/- mice were more susceptible to gram-negative bacterial infection than wild type mice, suggesting the in vivo significance of TAPE-L for antibacterial defenses. TAPE-L-deficient macrophages also showed impaired inflammatory cytokine responses to bacteria, indicating that TAPE-L facilitated the inflammation response against bacterial infection. Collectively, my thesis work demonstrated that TAPE-L is essential for activating the surface TLRs pathway and required for antibacterial immunity. My future directions will aim to explore the potential roles of TAPE-L in regulating other TLR or PRR pathways during bacterial infections.
1. Janeway CA, Jr. (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54 Pt 1: 1-13.
2. Bruno Lemaitre EN, Lydia Michaut, Jean-Marc Reichhart, and Jules A. Hoffmann (1996) The Dorsoventral Regulatory Gene Cassette spa¨ tzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell 86: 973-983.
3. Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397.
4. Shizuo Akira IA, Akira Hayashi, Kumao Shoutaro Tsuji, Misako Matsumoto, Osamu Takeuchi,Toyoshima and Tsukasa Seya (2000) Bacillus Calmette-Guérin: Involvement of Wall Skeleton of Mycobacterium bovis Maturation of Human Dendritic Cells by Cell Toll-Like Receptors. Infection and Immunity 68: 6883-6890.
5. Cheryl J. Hertz SMK, Paul J. Godowski,Deborah A. Bouis, Michael V. Norgard, Michael D. Roth and Robert L. Modlin (2001) Microbial Lipopeptides Stimulate Dendritic Cell Maturation Via Toll-Like Receptor 2. The Journal of Immunology 166: 2444-2450.
6. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, et al. (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11: 997-1004.
7. Zhang Z, Yuan B, Bao M, Lu N, Kim T, et al. (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12: 959-965.
8. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786-791.
9. Wu J, Sun L, Chen X, Du F, Shi H, et al. (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339: 826-830.
10. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140: 805-820.
11. Franchi L, Munoz-Planillo R, Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13: 325-332.
12. Broz P, Monack DM (2013) Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 13: 551-565.
13. von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE (2013) Recognition of bacteria by inflammasomes. Annu Rev Immunol 31: 73-106.
14. Heguy A, Baldari CT, Macchia G, Telford JL, Melli M (1992) Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila toll protein are essential for IL-1R signal transduction. J Biol Chem 267: 2605-2609.
15. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, et al. (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130: 1071-1082.
16. Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, et al. (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31: 873-884.
17. Park BS, Song DH, Kim HM, Choi BS, Lee H, et al. (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458: 1191-1195.
18. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, et al. (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2: 253-258.
19. Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, et al. (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424: 743-748.
20. Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4: 161-167.
21. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, et al. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301: 640-643.
22. Kagan JC, Su T, Horng T, Chow A, Akira S, et al. (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9: 361-368.
23. Muzio M (1997) IRAK (Pelle) Family Member IRAK-2 and MyD88 as Proximal Mediators of IL-1 Signaling. Science 278: 1612-1615.
24. Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465: 885-890.
25. Skaug B, Jiang X, Chen ZJ (2009) The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78: 769-796.
26. Häcker H, Karin M (2006) Regulation and Function of IKK and IKK-Related Kinases. re13-re13 p.
27. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, et al. (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: 491-496.
28. Sato M, Tanaka N, Hata N, Oda E, Taniguchi T (1998) Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta gene. FEBS Lett 425: 112-116.
29. Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, et al. (2000) Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13: 539-548.
30. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10: 1215-1221.
31. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, et al. (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333: 228-233.
32. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, et al. (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37: 223-234.
33. Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80: 125-156.
34. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, et al. (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451: 350-354.
35. Fabrega A, Vila J (2013) Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26: 308-341.
36. Chang CH, Lai LC, Cheng HC, Chen KR, Syue YZ, et al. (2011) TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. J Biol Chem 286: 7043-7051.
37. Chen KR, Chang CH, Huang CY, Lin CY, Lin WY, et al. (2012) TBK1-associated protein in endolysosomes (TAPE)/CC2D1A is a key regulator linking RIG-I-like receptors to antiviral immunity. J Biol Chem 287: 32216-32221.
38. Ou XM, Lemonde S, Jafar-Nejad H, Bown CD, Goto A, et al. (2003) Freud-1: A neuronal calcium-regulated repressor of the 5-HT1A receptor gene. J Neurosci 23: 7415-7425.
39. Rogaeva A, Galaraga K, Albert PR (2007) The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. J Neurosci Res 85: 2833-2838.
40. Nakamura A, Naito M, Tsuruo T, Fujita N (2008) Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Mol Cell Biol 28: 5996-6009.
41. Martinelli N, Hartlieb B, Usami Y, Sabin C, Dordor A, et al. (2012) CC2D1A is a regulator of ESCRT-III CHMP4B. J Mol Biol 419: 75-88.
42. Usami Y, Popov S, Weiss ER, Vriesema-Magnuson C, Calistri A, et al. (2012) Regulation of CHMP4/ESCRT-III function in human immunodeficiency virus type 1 budding by CC2D1A. J Virol 86: 3746-3756.
43. Jaekel R, Klein T (2006) The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Dev Cell 11: 655-669.
44. Zhao M, Li XD, Chen Z (2010) CC2D1A, a DM14 and C2 domain protein, activates NF-kappaB through the canonical pathway. J Biol Chem 285: 24372-24380.
45. 林宛瑩 (2011) 探討一個新的先天性免疫調控分子tape-L在病毒防禦的角色: 國立成功大學.
46. Hadjighassem MR, Galaraga K, Albert PR (2011) Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene. Eur J Neurosci 33: 214-223.
47. Tamai R, Sugawara S, Takeuchi O, Akira S, Takada H (2003) Synergistic effects of lipopolysaccharide and interferon-gamma in inducing interleukin-8 production in human monocytic THP-1 cells is accompanied by up-regulation of CD14, Toll-like receptor 4, MD-2 and MyD88 expression. J Endotoxin Res 9: 145-153.
48. Jones BD, Falkow S (1996) SALMONELLOSIS: Host Immune Responses and Bacterial Virulence Determinants1. Annual Review of Immunology 14: 533-561.
49. Seeley EJ, Matthay MA, Wolters PJ (2012) Inflection points in sepsis biology: from local defense to systemic organ injury. Am J Physiol Lung Cell Mol Physiol 303: L355-363.
50. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, et al. (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450: 1253-1257.
51. Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, et al. (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27: 135-144.
52. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V (2008) Toll-like receptors control autophagy. EMBO J 27: 1110-1121.
53. Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, et al. (2011) CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147: 868-880.
54. Hagberg L, Briles DE, Eden CS (1985) Evidence for separate genetic defects in C3H/HeJ and C3HeB/FeJ mice, that affect susceptibility to gram-negative infections. J Immunol 134: 4118-4122.
55. Woods JP, Frelinger JA, Warrack G, Cannon JG (1988) Mouse genetic locus Lps influences susceptibility to Neisseria meningitidis infection. Infect Immun 56: 1950-1955.
56. Poltorak A (1998) Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene. Science 282: 2085-2088.
57. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, et al. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162: 3749-3752.
58. Davis KM, Nakamura S, Weiser JN (2011) Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. J Clin Invest 121: 3666-3676.
59. Nakamura N, Lill JR, Phung Q, Jiang Z, Bakalarski C, et al. (2014) Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509: 240-244.
60. Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15: 164-187.
61. Zurita E, Chagoyen M, Cantero M, Alonso R, Gonzalez-Neira A, et al. (2011) Genetic polymorphisms among C57BL/6 mouse inbred strains. Transgenic Res 20: 481-489.
62. Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V, et al. (2013) A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol 14: R82.
63. Arthur JC, Lich JD, Ye Z, Allen IC, Gris D, et al. (2010) Cutting edge: NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity. J Immunol 185: 4515-4519.
校內:不公開