| 研究生: |
利安圖 Herianto, Samuel |
|---|---|
| 論文名稱: |
利用酵母菌蛋白體微陣列分析磷脂醯肌醇-5-磷酸的結合蛋白 Systematic analysis of phosphatidylinositol-5-phosphate-binding proteins using yeast proteome microarrays |
| 指導教授: |
陳健生
Chen, Chien-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 食品安全衛生暨風險管理研究所 Department of Food Safety / Hygiene and Risk Management |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 酵母菌蛋白體微陣列 、磷脂醯肌醇-5-磷酸 、脂質-蛋白質相互作用 、P環 、Walker A基序 、石英晶體微量天平 |
| 外文關鍵詞: | Yeast proteome microarray, Phosphatidylinositol-5-phosphate (PI5P), Lipid-protein interactions, P-loop domain, Walker A motif, Quartz crystal microbalance (QCM) |
| 相關次數: | 點閱:119 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
酵母菌中磷脂醯肌醇-5-磷酸结合蛋白相互作用的系统分析對真核生物具有很高的生物學意義。在這裡,我們使用酵母蛋白體微陣列(〜5800個纯化的蛋白質)對PI5P结合蛋白進行了高通量和系统的篩選。根據探测含PI5P的螢光奈米脂粒於酵母蛋白體晶片及使用流式细胞儀驗證,總共鑑定出41個PI5P结合蛋白。富集分析揭示了與核糖體合成和rRNA加工相關的重要功能。蛋白質的位置富集於核酸,分子功能方面富集於水解酶活性。 InterPro域分析表明,PI5P结合蛋白富集於P環。此外,使用MEME,我們進一步確定了一組共有基序(IVGPAGTGKSTLF),該基序包含Walker A序列,即眾所周知的核苷酸結合基序。此外,使用石英晶體微量天平,共有基序和Walker A基序均顯示出與含PI5P的脂質體有强结合,而與不含PI5P的脂質體和含PI的脂質體無结合。這項研究不僅確定了一组新的PI5P结合蛋白,而且還揭示了Walker A基序具有很强的PI5P结合力(Kd = 1.81 x 10-7 M)。本研究拓寬PI5P 結合酵母菌蛋白的範疇並提出PI5P在酵母模型系統中潛在功能的新見解。
Systematic analysis of phosphatidylinositol-5-phosphate (PI5P)-binding protein interactome in the yeast system holds a high biological significance for eukaryotes. Here, we used yeast proteome microarrays (~5800 purified proteins) to conduct a high-throughput and systematic screening of PI5P-binding proteins. Based on probing the PI5P-containing fluorescent liposomal nanovesicles to the yeast proteome chip, and subsequently using flow cytometry to validate, a total of 41 PI5P-binding proteins were identified. Enrichment analysis revealed significant functions associated with ribosome biogenesis and rRNA-processing. Nucleolus and hydrolase activity were enriched in terms of proteins’ location and molecular function, respectively. The InterPro domain analysis indicated that PI5P-binding proteins are enriched in P-loop containing nucleoside triphosphate hydrolases domain (P-loop). Using the MEME program, we further identified a consensus motif (IVGPAGTGKSTLF) which contains Walker A sequence, a well-known nucleotide-binding motif. Using quartz crystal microbalance (QCM), both the consensus motif and Walker A motif also showed strong binding to PI5P-containing liposomes, but not PI5P-deprived liposomes and PI-containing liposomes. This study not only identified a new set of PI5P-binding proteins but also revealed the strong PI5P-binding affinity (Kd = 1.81 x 10-7 M) of Walker A motif. The current study widens the spectrum of PI5P-binding yeast proteins and opens the new insight related to the potential functionality of PI5P in the yeast model system.
Aguilar, P. S., Froehlich, F., Rehman, M., Shales, M., Ulitsky, I., Olivera-Couto, A., et al. (2010). A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nature Structural & Molecular Biology, 17(7), 901-175.
Akhmetova, K. A., Chesnokov, I. N., & Fedorova, S. A. (2018). [Functional Characterization of Septin Complexes]. Molekuliarnaia biologiia, 52(2), 155-171.
Alvarez-Venegas, R., Sadder, M., Hlavacka, A., Baluška, F., Xia, Y., Lu, G., et al. (2006). The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proceedings of the National Academy of Sciences, 103(15), 6049-6054.
Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., et al. (2004). UniProt: the Universal Protein knowledgebase. Nucleic Acids Res, 32(Database issue), 115-119.
Arlt, H., Perz, A., & Ungermann, C. (2011). An overexpression screen in Saccharomyces cerevisiae identifies novel genes that affect endocytic protein trafficking. Traffic, 12(11), 1592-1603.
Babu, M., Vlasblom, J., Pu, S., Guo, X., Graham, C., Bean, B. D., et al. (2012). Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature, 489(7417), 585-589.
Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. (2015). The MEME Suite. Nucleic Acids Res, 43(W1), 39-49.
Battle, A. R., Ridone, P., Bavi, N., Nakayama, Y., Nikolaev, Y. A., & Martinac, B. (2015). Lipid–protein interactions: Lessons learned from stress. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848(9), 1744-1756.
Bauerschmitt, H., Funes, S., & Herrmann, J. M. (2008). The membrane-bound GTPase Guf1 promotes mitochondrial protein synthesis under suboptimal conditions. Journal of Biological Chemistry, 283(25), 17139-17146.
Berchtold, D., & Walther, T. C. (2009). TORC2 Plasma Membrane Localization Is Essential for Cell Viability and Restricted to a Distinct Domain. Molecular Biology of the Cell, 20(5), 1565-1575.
Berg, J. M. (2001). Biochemistry, revised edition. Chemical & Engineering News, 79(13), 130-130.
Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry, ; W. H: Freeman: New York.
Bertin, A., & Nogales, E. (2012). Septin filament organization in Saccharomyces cerevisiae. Communicative & integrative biology, 5(5), 503-505.
Binder, H., Weber, P. C., & Siess, W. (1985). Separation of inositol phosphates and glycerophosphoinositol phosphates by high-performance liquid chromatography. Analytical biochemistry, 148(1), 220-227.
Bird, I. M. (1994). Analysis of cellular phosphoinositides and phosphoinositols by high-performance liquid chromatography Biomembrane Protocols (pp. 249-277): Springer.
Blinnikova, E., Mirjuschenko, F., Shabalin, Y. A., & Egorov, S. (2002). Vesicular transport of extracellular acid phosphatases in yeast Saccharomyces cerevisiae. Biochemistry (Moscow), 67(4), 485-490.
Boal, F., Mansour, R., Gayral, M., Saland, E., Chicanne, G., Xuereb, J.-M., et al. (2015). TOM1 is a PI5P effector involved in the regulation of endosomal maturation. J Cell Sci, 128(4), 815-827.
Bodman, J. A. R., Yang, Y., Logan, M. R., & Eitzen, G. (2015). Yeast Translation Elongation Factor-1A Binds Vacuole-localized Rho1p to Facilitate Membrane Integrity through F-actin Remodeling. Journal of Biological Chemistry, 290(8), 4705-4716.
Bouchez, I., Pouteaux, M., Canonge, M., Genet, M., Chardot, T., Guillot, A., et al. (2015). Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase. Biology open, 4(7), 764-775.
Bratschi, M. W., Burrowes, D. P., Kulaga, A., Cheung, J. F., Alvarez, A. L., Kearley, J., et al. (2009). Glycerol-3-phosphate acyltransferases gat1p and gat2p are microsomal phosphoproteins with differential contributions to polarized cell growth. Eukaryotic cell, 8(8), 1184-1196.
Bugreev, D. V., & Mazin, A. V. (2004). Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proceedings of the National Academy of Sciences, 101(27), 9988-9993.
Burger, F., Daugeron, M.-C., & Linder, P. (2000). Dbp10p, a putative RNA helicase from Saccharomyces cerevisiae, is required for ribosome biogenesis. Nucleic acids research, 28(12), 2315-2323.
Charette, J. M., & Baserga, S. J. (2010). The DEAD-box RNA helicase-like Utp25 is an SSU processome component. RNA, 16(11), 2156-2169.
Charles, P. T., Goldman, E. R., Rangasammy, J. G., Schauer, C. L., Chen, M. S., & Taitt, C. R. (2004). Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosensors & Bioelectronics, 20(4), 753-764.
Chen, C. S., & Zhu, H. (2006). Protein microarrays. Biotechniques, 40(4), 423, 425, 427 passim.
Chen, R., & Snyder, M. (2010). Yeast proteomics and protein microarrays. J Proteomics, 73(11), 2147-2157.
Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E. T., et al. (2012). Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res, 40(Database issue), 700-705.
Chuang, T.-H., Bohl, B. P., & Bokoch, G. (1993). Biologically active lipids are regulators of Rac. GDI complexation. Journal of Biological Chemistry, 268(35), 26206-26211.
Clarke, J. H., Letcher, A. J., D'Santos, C. S., Halstead, J. R., Irvine, R. F., & Divecha, N. (2001). Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells. Biochemical Journal, 357, 905-910.
Clarke, O. B., Tomasek, D., Jorge, C. D., Dufrisne, M. B., Kim, M., Banerjee, S., et al. (2015). Structural basis for phosphatidylinositol-phosphate biosynthesis. Nature communications, 6, 8505.
Contreras, F. X., Ernst, A. M., Haberkant, P., Bjorkholm, P., Lindahl, E., Gonen, B., et al. (2012). Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature, 481(7382), 525-529.
Corradi, V., Mendez-Villuendas, E., Ingólfsson, H. I., Gu, R.-X., Siuda, I., Melo, M. N., et al. (2018). Lipid–Protein Interactions Are Unique Fingerprints for Membrane Proteins. ACS Central Science, 4(6), 709-717.
Cote, G. G., & Crain, R. C. (1993). Biochemistry of phosphoinositides. Annual review of plant biology, 44(1), 333-356.
de Kroon, A. I. (2007). Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1771(3), 343-352.
De Smet, C. H., Vittone, E., Scherer, M., Houweling, M., Liebisch, G., Brouwers, J. F., et al. (2012). The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p. Molecular biology of the cell, 23(7), 1146-1156.
De Thozée, C. P., Cronin, S., Goj, A., Golin, J., & Ghislain, M. (2007). Subcellular trafficking of the yeast plasma membrane ABC transporter, Pdr5, is impaired by a mutation in the N‐terminal nucleotide‐binding fold. Molecular microbiology, 63(3), 811-825.
Delehanty, J. B., & Ligler, F. S. (2003). Method for printing functional protein Microarrays. Biotechniques, 34(2), 380-388.
Dembek, A. (2019). Macrophage activation and desensitization pathways in inflammatory processes.
Desrivières, S., Cooke, F. T., Parker, P. J., & Hall, M. N. (1998). MSS4, a phosphatidylinositol-4-phosphate 5-kinase required for organization of the actin cytoskeleton in Saccharomyces cerevisiae. Journal of Biological Chemistry, 273(25), 15787-15793.
Di Lello, P., Nguyen, B. D., Jones, T. N., Potempa, K., Kobor, M. S., Legault, P., et al. (2005). NMR structure of the amino-terminal domain from the Tfb1 subunit of TFIIH and characterization of its phosphoinositide and VP16 binding sites. Biochemistry, 44(21), 7678-7686.
Domnanich, P., Sauer, U., Pultar, J., & Preininger, C. (2009). Protein microarray for the analysis of human melanoma biomarkers. Sensors and Actuators B: Chemical, 139(1), 2-8.
Dong, J., Lai, R., Jennings, J. L., Link, A. J., & Hinnebusch, A. G. (2005). The novel ATP-binding cassette protein ARB1 is a shuttling factor that stimulates 40S and 60S ribosome biogenesis. Molecular and cellular biology, 25(22), 9859-9873.
Dunn, R., Klos, D. A., Adler, A. S., & Hicke, L. (2004). The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. Journal of Cell Biology, 165(1), 135-144.
Emptage, R. P., Tonthat, N. K., York, J. D., Schumacher, M. A., & Zhou, P. (2014). Structural basis of lipid binding for the membrane-embedded tetraacyldisaccharide-1-phosphate 4'-kinase LpxK. J Biol Chem, 289(35), 24059-24068.
Fadri, M., Daquinag, A., Wang, S., Xue, T., & Kunz, J. (2005). The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4, 5-bisphosphate and TORC2. Molecular biology of the cell, 16(4), 1883-1900.
Fei, W., Zhong, L., Ta, M. T., Shui, G., Wenk, M. R., & Yang, H. (2011). The size and phospholipid composition of lipid droplets can influence their proteome. Biochemical and biophysical research communications, 415(3), 455-462.
Finnigan, G. C., Booth, E. A., Duvalyan, A., Liao, E. N., & Thorner, J. (2015). The carboxy-terminal tails of septins Cdc11 and Shs1 recruit myosin-II binding factor Bni5 to the bud neck in Saccharomyces cerevisiae. Genetics, 200(3), 843-862.
Frangioni, J. V., Beahm, P. H., Shifrin, V., Jost, C. A., & Neel, B. G. (1992). The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell, 68(3), 545-560.
Gallego, O., Betts, M. J., Gvozdenovic-Jeremic, J., Maeda, K., Matetzki, C., Aguilar-Gurrieri, C., et al. (2010). A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Molecular Systems Biology, 6. 778-790.
Gandini, R., Dossena, S., Vezzoli, V., Tamplenizza, M., Salvioni, E., Ritter, M., et al. (2008). LSm4 Associates with the Plasma Membrane and Acts as a Co-factor in Cell Volume Regulation. Cellular Physiology and Biochemistry, 22(5-6), 579-590.
Garcia, G., Bertin, A., Li, Z., Song, Y., McMurray, M. A., Thorner, J., et al. (2011). Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. J Cell Biol, 195(6), 993-1004.
Gatta, A., Wong, L., & Sere, Y. (2015). Caldero n-Noren a DM, Cockcroft S, Menon AK, Levine TP: A new family of StART domain proteins at membrane contact sites has a role in ER–PM sterol transport. Elife, 4, 1-46.
Gerhardy, S., Menet, A. M., Peña, C., Petkowski, J. J., & Panse, V. G. (2014). Assembly and nuclear export of pre-ribosomal particles in budding yeast. Chromosoma, 123(4), 327-344.
González Montoro, A., & Ungermann, C. (2015). StARTing to understand membrane contact sites. Trends in Cell Biology, 25(9), 497-498.
Gozani, O., Karuman, P., Jones, D. R., Ivanov, D., Cha, J., Lugovskoy, A. A., et al. (2003). The PHD Finger of the Chromatin-Associated Protein ING2 Functions as a Nuclear Phosphoinositide Receptor. Cell, 114(1), 99-111.
Grainger, D. L., Tavelis, C., Ryan, A. J., & Hinchliffe, K. A. (2011). Involvement of phosphatidylinositol 5-phosphate in insulin-stimulated glucose uptake in the L6 myotube model of skeletal muscle. Pflügers Archiv-European Journal of Physiology, 462(5), 723.
Grainger, D. L., Tavelis, C., Ryan, A. J., & Hinchliffe, K. A. (2012). The emerging role of PtdIns5P: another signalling phosphoinositide takes its place. Portland Press Limited. 25(9), 189-190.
Guittard, G., Gérard, A., Dupuis-Coronas, S., Tronchère, H., Mortier, E., Favre, C., et al. (2009). Cutting edge: Dok-1 and Dok-2 adaptor molecules are regulated by phosphatidylinositol 5-phosphate production in T cells. The Journal of Immunology, 182(7), 3974-3978.
Guittard, G., Mortier, E., Tronchère, H., Firaguay, G., Gérard, A., Zimmermann, P., et al. (2010). Evidence for a positive role of PtdIns5P in T‐cell signal transduction pathways. FEBS letters, 584(11), 2455-2460.
Guo, S., Stolz, L. E., Lemrow, S. M., & York, J. D. (1999). SAC1-like Domains of Yeast SAC1,INP52, and INP53 and of Human Synaptojanin Encode Polyphosphoinositide Phosphatases. Journal of Biological Chemistry, 274(19), 12990-12995.
Hall, D. A., Ptacek, J., & Snyder, M. (2007). Protein microarray technology. Mechanisms of Ageing and Development, 128(1), 161-167.
Hall, D. A., Zhu, H., Zhu, X., Royce, T., Gerstein, M., & Snyder, M. (2004). Regulation of gene expression by a metabolic enzyme. Science, 306(5695), 482-484.
Hallett, F. R., Watton, J., & Krygsman, P. (1991). Vesicle sizing: Number distributions by dynamic light scattering. Biophysical Journal, 59(2), 357-362.
Hanson, P. I., & Whiteheart, S. W. (2005). AAA+ proteins: have engine, will work. Nature reviews Molecular cell biology, 6(7), 519-529.
Hasegawa, J., Strunk, B. S., & Weisman, L. S. (2017). PI5P and PI(3,5)P(2): Minor, but Essential Phosphoinositides. Cell structure and function, 42(1), 49-60.
Herianto, S., Chen, C. S., & Zhu, H. (2019). Protein Microarrays and Liposome: A Method for Studying Lipid-Protein Interactions. Methods Mol Biol, 2003, 191-199.
Hilpelä, P., Vartiainen, M., & Lappalainen, P. (2004). Regulation of the actin cytoskeleton by PI (4,5)P2 and PI(3,4,5)P3. Phosphoinositides in Subcellular Targeting and Enzyme Activation. Springer. 117-163
Huang, D. W., Sherman, B. T., Tan, Q., Collins, J. R., Alvord, W. G., Roayaei, J., et al. (2007). The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol, 8(9), R183.
Huang, J., Zhu, H., Haggarty, S. J., Spring, D. R., Hwang, H., Jin, F., et al. (2004). Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proceedings of the National Academy of Sciences, 101(47), 16594-16599.
Huang, W., Zhang, H. L., Davrazou, F., Kutateladze, T. G., Shi, X. B., Gozani, O., et al. (2007). Stabilized phosphatidylinositol-5-phosphate analogues as ligands for the nuclear protein ING2: Chemistry, biology, and molecular modeling. Journal of the American Chemical Society, 129(20), 6498-6506.
Hulce, J. J., Cognetta, A. B., Niphakis, M. J., Tully, S. E., & Cravatt, B. F. (2013). Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nature Methods, 10(3), 259-264.
Hunter, S., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., et al. (2008). InterPro: the integrative protein signature database. Nucleic acids research, 37, 211-215.
Isakoff, S. J., Cardozo, T., Andreev, J., Li, Z., Ferguson, K. M., Abagyan, R., et al. (1998). Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. Embo Journal, 17(18), 5374-5387.
Johnson, J. E., & Cornell, R. B. (1999). Amphitropic proteins: regulation by reversible membrane interactions. Molecular membrane biology, 16(3), 217-235.
Jones, D. R., Bultsma, Y., Keune, W. J., Halstead, J. R., Elouarrat, D., Mohammed, S., et al. (2006). Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell, 23(5), 685-695.
Jones, R. B., Gordus, A., Krall, J. A., & MacBeath, G. (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature, 439(7073), 168-174.
Jost, M., Simpson, F., Kavran, J. M., Lemmon, M. A., & Schmid, S. L. (1998). Phosphatidylinositol-4, 5-bisphosphate is required for endocytic coated vesicle formation. Current biology, 8(25), 1399-1404.
Kawasaki, T., Takemura, N., Standley, D. M., Akira, S., & Kawai, T. (2013). The second messenger phosphatidylinositol-5-phosphate facilitates antiviral innate immune signaling. Cell host & microbe, 14(2), 148-158.
Kemmler, M., Sauer, U., Schleicher, E., Preininger, C., & Brandenburg, A. (2014). Biochip point-of-care device for sepsis diagnostics. Sensors and Actuators B: Chemical, 192, 205-215.
Khan, A., Newby, J., & Gladfelter, A. S. (2018). Control of septin filament flexibility and bundling by subunit composition and nucleotide interactions. Molecular biology of the cell, 29(6), 702-712.
Kohlwein, S. D. (2010). Triacylglycerol homeostasis: insights from yeast. Journal of Biological Chemistry, 285(21), 15663-15667.
Koonin, E. V. (1993). A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. Journal of molecular biology, 229(4), 1165-1174.
Kopec, K. K., Bozyczko-Coyne, D., & Williams, M. (2005). Target identification and validation in drug discovery: the role of proteomics. Biochemical pharmacology, 69(8), 1133-1139.
Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 305(3), 567-580.
Landego, I., Jayachandran, N., Wullschleger, S., Zhang, T. t., Gibson, I. W., Miller, A., et al. (2012). Interaction of TAPP adapter proteins with phosphatidylinositol (3, 4)‐bisphosphate regulates B‐cell activation and autoantibody production. European journal of immunology, 42(10), 2760-2770.
Laouini, A., Charcosset, C., Fessi, H., Holdich, R. G., & Vladisavljevic, G. T. (2013). Preparation of liposomes: a novel application of microengineered membranes--from laboratory scale to large scale. Colloids Surf B Biointerfaces, 112, 272-278.
Lee, A. G. (2003). Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta, 1612(1), 1-40.
Lehninger, A. (1982). Principles of biochemistry. 11(1).
Leipe, D. D., Koonin, E. V., & Aravind, L. (2003). Evolution and classification of P-loop kinases and related proteins. Journal of molecular biology, 333(4), 781-815.
Li, X. Y., Gianoulis, T. A., Yip, K. Y., Gerstein, M., & Snyder, M. (2010). Extensive In Vivo Metabolite-Protein Interactions Revealed by Large-Scale Systematic Analyses. Cell, 143(4), 639-650.
Lim, Y., Lim, S.-T., Tomar, A., Gardel, M., Bernard-Trifilo, J. A., Chen, X. L., et al. (2008). PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. The Journal of cell biology, 180(1), 187-203.
Lindsay, Y., McCoull, D., Davidson, L., Leslie, N. R., Fairservice, A., Gray, A., et al. (2006). Localization of agonist-sensitive PtdIns (3, 4, 5) P3 reveals a nuclear pool that is insensitive to PTEN expression. Journal of cell science, 119(24), 5160-5168.
Logan, M. R., Jones, L., Forsberg, D., Bodman, A., Baier, A., & Eitzen, G. (2011). Functional analysis of RhoGDI inhibitory activity on vacuole membrane fusion. Biochemical Journal, 434(3), 445-457.
Loh, B., Haase, M., Mueller, L., Kuhn, A., & Leptihn, S. (2017). The transmembrane morphogenesis protein gp1 of filamentous phages contains walker A and walker B motifs essential for phage assembly. Viruses, 9(4), 73.
Lu, K.-Y., Tao, S.-C., Yang, T.-C., Ho, Y.-H., Lee, C.-H., Lin, C.-C., et al. (2012). Profiling lipid-protein interactions using non-quenched fluorescent liposomal nanovesicles and proteome microarrays. Molecular & Cellular Proteomics, 143(4), 112.
Lu, K. Y., Chen, C. S., Neiswinger, J., & Zhu, H. (2016). Characterization of Lipid-Protein Interactions Using Nonquenched Fluorescent Liposomal Nanovesicles and Yeast Proteome Microarrays. Cold Spring Harb Protoc, 2016(10).
Lutkenhaus, J., & Sundaramoorthy, M. (2003). MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation. Molecular microbiology, 48(2), 295-303.
MacBeath, G., & Schreiber, S. L. (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289(5485), 1760-1763.
Maeda, K., Anand, K., Chiapparino, A., Kumar, A., Poletto, M., Kaksonen, M., et al. (2013). Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature, 501(7466), 257-267.
Martin, T. F. (2001). PI (4, 5) P2 regulation of surface membrane traffic. Current opinion in cell biology, 13(4), 493-499.
Mathieson, E. M., Suda, Y., Nickas, M., Snydsman, B., Davis, T. N., Muller, E. G., et al. (2010). Vesicle docking to the spindle pole body is necessary to recruit the exocyst during membrane formation in Saccharomyces cerevisiae. Molecular biology of the cell, 21(21), 3693-3707.
Matte, A., Goldie, H., Sweet, R. M., & Delbaere, L. T. (1996). Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. J Mol Biol, 256(1), 126-143.
McPhee, F., Lowe, G., Vaziri, C., & Downes, C. (1991). Phosphatidylinositol synthase and phosphatidylinositol/inositol exchange reactions in turkey erythrocyte membranes. Biochemical journal, 275(1), 187-192.
Melles, E., Anderson, H., Wallinder, D., Shafqat, J., Bergman, T., Aastrup, T., et al. (2005). Electroimmobilization of proinsulin C-peptide to a quartz crystal microbalance sensor chip for protein affinity purification. Analytical biochemistry, 341(1), 89-93.
Mizejewski, G. (2015). The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets. Journal of drug targeting, 23(6), 538-551.
Musselman, C. A., & Kutateladze, T. G. (2009). PHD fingers: epigenetic effectors and potential drug targets. Molecular interventions, 9(6), 314.
Nakamura-Kubo, M., Hirata, A., Shimoda, C., & Nakamura, T. (2011). The fission yeast pleckstrin homology domain protein Spo7 is essential for initiation of forespore membrane assembly and spore morphogenesis. Molecular biology of the cell, 22(18), 3442-3455.
Nicot, A.-S., Toussaint, A., Tosch, V., Kretz, C., Wallgren-Pettersson, C., Iwarsson, E., et al. (2007). Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nature genetics, 39(9), 1134-1139.
Niebuhr, K., Giuriato, S., Pedron, T., Philpott, D. J., Gaits, F., Sable, J., et al. (2002). Conversion of PtdIns(4,5)P-2 into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology. Embo Journal, 21(19), 5069-5078.
Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E., & Majerus, P. W. (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14057-14059.
Oppelt, A., Lobert, V. H., Haglund, K., Mackey, A. M., Rameh, L. E., Liestol, K., et al. (2013). Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration. Embo Reports, 14(1), 57-64.
Ortiz, D., Ordyan, M., Sippy, J., Oh, C.-S., Keller, N., Feiss, M., et al. (2016). Walker-A motif acts to coordinate ATP hydrolysis with motor output in viral DNA packaging. Journal of molecular biology, 428(13), 2709-2729.
Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nat Rev Drug Discov, 5(12), 993-996.
Park, C., Kang, D.-S., Shin, G.-H., Seo, J., Kim, H., Suh, P.-G., et al. (2015). Identification of novel phosphatidic acid-binding proteins in the rat brain. Neuroscience Letters, 595, 108-113.
Pathak, E., Atri, N., & Mishra, R. (2014). Analysis of P-Loop and its Flanking Region Subsequence of Diverse NTPases Reveals Evolutionary Selected Residues. Bioinformation, 10(4), 216-220.
Pendaries, C., Tronchère, H., Arbibe, L., Mounier, J., Gozani, O., Cantley, L., et al. (2006). PtdIns (5) P activates the host cell PI3‐kinase/Akt pathway during Shigella flexneri infection. The EMBO journal, 25(5), 1024-1034.
Peng, T., Yuan, X., & Hang, H. C. (2014). Turning the spotlight on protein–lipid interactions in cells. Current opinion in chemical biology, 21, 144-153.
Poli, A., Zaurito, A. E., Abdul-Hamid, S., Fiume, R., Faenza, I., & Divecha, N. (2019). Phosphatidylinositol 5 Phosphate (PI5P): From Behind the Scenes to the Front (Nuclear) Stage. International journal of molecular sciences, 20(9), 2080.
Ramakrishnan, C., Dani, V., & Ramasarma, T. (2002). A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins. Protein engineering, 15(10), 783-798.
Ramel, D., Lagarrigue, F., Pons, V., Mounier, J., Dupuis-Coronas, S., Chicanne, G., et al. (2011). Shigella flexneri infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci Signal, 4(191), 61.
Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., et al. (2000). Phosphatidylinositol 4, 5-bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell, 100(2), 221-228.
Reifler, A. N. (2013). Role of Phosphatidylinositol 3-Phosphates and Their Regulators in Skeletal Muscle Development and Disease. 25(5), 1024-1034.
Renne, M. F., & de Kroon, A. I. P. M. (2018). The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Letters, 592(8), 1330-1345.
Rubashkin, M. G., Cassereau, L., Bainer, R., DuFort, C. C., Yui, Y., Ou, G., et al. (2014). Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3, 4, 5)-triphosphate. Cancer research, 74(17), 4597-4611.
Saliba, A.-E., Vonkova, I., Ceschia, S., Findlay, G. M., Maeda, K., Tischer, C., et al. (2014). A quantitative liposome microarray to systematically characterize protein-lipid interactions. nature methods, 11(1), 47.
Saliba, A.-E., Vonkova, I., & Gavin, A.-C. (2015). The systematic analysis of protein–lipid interactions comes of age. Nature Reviews Molecular Cell Biology, 16(12), 753.
Sankaran, V. G., Klein, D. E., Sachdeva, M. M., & Lemmon, M. A. (2001). High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. Biochemistry, 40(29), 8581-8587.
Sapsford, K. E., Ngundi, M. M., Moore, M. H., Lassman, M. E., Shriver-Lake, L. C., Taitt, C. R., et al. (2006). Rapid detection of foodborne contaminants using an Array Biosensor. Sensors and actuators B: chemical, 113(2), 599-607.
Saraste, M., Sibbald, P. R., & Wittinghofer, A. (1990). The P-loop—a common motif in ATP-and GTP-binding proteins. Trends in biochemical sciences, 15(11), 430-434.
Sbrissa, D., Ikonomov, O. C., Filios, C., Delvecchio, K., & Shisheva, A. (2012). Functional dissociation between PIKfyve-synthesized PtdIns5P and PtdIns(3,5)P2 by means of the PIKfyve inhibitor YM201636. Am J Physiol Cell Physiol, 303(4), 436-446.
Scheid, M. P., Huber, M., Damen, J. E., Hughes, M., Kang, V., Neilsen, P., et al. (2002). Phosphatidylinositol (3, 4, 5) p3 is essential but not sufficient for protein kinase b (pkb) activation; phosphatidylinositol (3, 4) p2 is required for pkb phosphorylation at ser-473 studies using cells from sh2-containing inositol-5-phosphatase knockout mice. Journal of Biological Chemistry, 277(11), 9027-9035.
Sharma, D., Say, A. F., Ledford, L. L., Hughes, A. J., Sehorn, H. A., Dwyer, D. S., et al. (2013). Role of the conserved lysine within the Walker A motif of human DMC1. DNA repair, 12(1), 53-62.
Sherman, P. J., Jackway, R. J., Gehman, J. D., Praporski, S., McCubbin, G. A., Mechler, A., et al. (2009). Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1 a: an NMR and QCM study. Biochemistry, 48(50), 11892-11901.
Shisheva, A. (2012). PIKfyve and its Lipid products in health and in sickness. Curr Top Microbiol Immunol, 362, 127-162.
Shisheva, A. (2013). PtdIns5P: news and views of its appearance, disappearance and deeds. Arch Biochem Biophys, 538(2), 171-180.
Short, M. K., Hallett, J. P., Tar, K., Dange, T., Schmidt, M., Moir, R., et al. (2012). The Yeast Magmas Ortholog Pam16 Has an Essential Function in Fermentative Growth That Involves Sphingolipid Metabolism. PLOS ONE, 7(7), 39428.
Sipos, G., & Kuchler, K. (2006). Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Current drug targets, 7(4), 471-481.
Snider, J., Hanif, A., Lee, M. E., Jin, K., Analyn, R. Y., Graham, C., et al. (2013). Mapping the functional yeast ABC transporter interactome. Nature chemical biology, 9(9), 565.
Stillman, B. A., & Tonkinson, J. L. (2000). FAST (TM) slides: A novel surface for microarrays. Biotechniques, 29(3), 630-642.
Story, R. M., & Steitz, T. A. (1992). Structure of the recA protein–ADP complex. Nature, 355(6358), 374.
Subramanian, D., Laketa, V., Muller, R., Tischer, C., Zarbakhsh, S., Pepperkok, R., et al. (2010). Activation of membrane-permeant caged PtdIns(3)P induces endosomal fusion in cells. Nature Chemical Biology, 6(5), 324-326.
Sung, T. C., Chen, W. Y., Shah, P., & Chen, C. S. (2016). A replaceable liposomal aptamer for the ultrasensitive and rapid detection of biotin. Sci Rep, 6, 21369.
Surma, M. A., Klose, C., Peng, D., Shales, M., Mrejen, C., Stefanko, A., et al. (2013). A Lipid E-MAP Identifies Ubx2 as a Critical Regulator of Lipid Saturation and Lipid Bilayer Stress. Molecular Cell, 51(4), 519-530.
Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., et al. (2010). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic acids research, 39, 561-568.
Temmerman, K., & Nickel, W. (2009). A novel flow cytometric assay to quantify interactions between proteins and membrane lipids. Journal of Lipid Research, 50(6), 1245-1254.
The UniProt, C. (2017). UniProt: the universal protein knowledgebase. Nucleic Acids Res, 45(D1), 158-169.
Thiele, C., Hannah, M. J., Fahrenholz, F., & Huttner, W. B. (2000). Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature Cell Biology, 2(1), 42-49.
Tiedje, C., Sakwa, I., Just, U., & Höfken, T. (2008). The rho gdi rdi1 regulates rho gtpases by distinct mechanisms. Molecular biology of the cell, 19(7), 2885-2896.
Tsai, J., & Douglas, M. G. (1996). A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. Journal of Biological Chemistry, 271(16), 9347-9354.
Tschmelak, J., Proll, G., & Gauglitz, G. (2005). Optical biosensor for pharmaceuticals, antibiotics, hormones, endocrine disrupting chemicals and pesticides in water: Assay optimization process for estrone as example. Talanta, 65(2), 313-323.
UniProt Consortium, T. (2018). UniProt: the universal protein knowledgebase. Nucleic Acids Res, 46(5), 2699.
Vaccari, I., Dina, G., Tronchere, H., Kaufman, E., Chicanne, G., Cerri, F., et al. (2011). Genetic interaction between MTMR2 and FIG4 phospholipid phosphatases involved in Charcot-Marie-Tooth neuropathies. PLoS Genet, 7(10), 100-123.
Vetter, I. R., & Wittinghofer, A. (1999). Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Quarterly reviews of biophysics, 32(1), 1-56.
Viaud, J., Lagarrigue, F., Ramel, D., Allart, S., Chicanne, G., Ceccato, L., et al. (2014). Phosphatidylinositol 5-phosphate regulates invasion through binding and activation of Tiam1. Nature communications, 5(1), 1-17.
Viiri, K. M., Jänis, J., Siggers, T., Heinonen, T. Y., Valjakka, J., Bulyk, M. L., et al. (2009). DNA-binding and-bending activities of SAP30L and SAP30 are mediated by a zinc-dependent module and monophosphoinositides. Molecular and cellular biology, 29(2), 342-356.
Vild, C. J., & Xu, Z. (2014). Vfa1 binds to the N-terminal microtubule-interacting and trafficking (MIT) domain of Vps4 and stimulates its ATPase activity. J Biol Chem, 289(15), 10378-10386.
Vonkova, I., Saliba, A. E., Deghou, S., Anand, K., Ceschia, S., Doerks, T., et al. (2015). Lipid Cooperativity as a General Membrane-Recruitment Principle for PH Domains. Cell Reports, 12(9), 1519-1530.
Vorauer-Uhl, K., Wagner, A., Borth, N., & Katinger, H. (2000). Determination of liposome size distribution by flow cytometry. Cytometry, 39(2), 166-171.
Walker, J. E., Saraste, M., Runswick, M. J., & Gay, N. J. (1982). Distantly related sequences in the alpha‐and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. The EMBO journal, 1(8), 945-951.
Walker, J. M. (2009). The bicinchoninic acid (BCA) assay for protein quantitation The protein protocols handbook. Springer. 11-15.
Wang, C.-W. (2015). Lipid droplet dynamics in budding yeast. Cellular and molecular life sciences, 72(14), 2677-2695.
Wang, Y. J., Wang, J., Sun, H. Q., Martinez, M., Sun, Y. X., Macia, E., et al. (2003). Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell, 114(3), 299-310.
Wilson, Z. N., Scott, A. L., Dowell, R. D., & Odorizzi, G. (2018). PI (3, 5) P2 controls vacuole potassium transport to support cellular osmoregulation. Molecular biology of the cell, 29(14), 1718-1731.
Wu, M., Chong, L. S., Perlman, D. H., Resnick, A. C., & Fiedler, D. (2016). Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms. Proceedings of the National Academy of Sciences, 113(44), 6757-6765.
Wurmser, A. E., Gary, J. D., & Emr, S. D. (1999). Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. Journal of Biological Chemistry, 274(14), 9129-9132.
Wymann, M. P., & Schneiter, R. (2008). Lipid signalling in disease. Nat Rev Mol Cell Biol, 9(2), 162-176.
Yildirim, S., Castano, E., Sobol, M., Philimonenko, V. V., Dzijak, R., Venit, T., et al. (2013). Involvement of phosphatidylinositol 4, 5-bisphosphate in RNA polymerase I transcription. J Cell Sci, 126(12), 2730-2739.
Zhang, H. (2017). Thin-Film Hydration Followed by Extrusion Method for Liposome Preparation. Methods Mol Biol, 1522, 17-22.
Zhang, J., Rubio, V., Lieberman, M. W., & Shi, Z.-Z. (2009). OLA1, an Obg-like ATPase, suppresses antioxidant response via nontranscriptional mechanisms. Proceedings of the National Academy of Sciences, 106(36), 15356-15361.
Zhang, P. B., Wang, Y., Sesaki, H., & Iijima, M. (2010). Proteomic identification of phosphatidylinositol (3,4,5) triphosphate-binding proteins in Dictyostelium discoideum. Proceedings of the National Academy of Sciences of the United States of America, 107(26), 11829-11834.
Zhao, S., Chen, Y., Chen, F., Huang, D., Shi, H., Lo, L. J., et al. (2019). Sas10 controls ribosome biogenesis by stabilizing Mpp10 and delivering the Mpp10–Imp3–Imp4 complex to nucleolus. Nucleic Acids Research, 47(6), 2996-3012.
Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., et al. (2001). Global Analysis of Protein Activities Using Proteome Chips. [10.1126/science.1062191]. Science, 293(5537), 2101.
Zou, J., Marjanovic, J., Kisseleva, M. V., Wilson, M., & Majerus, P. W. (2007). Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis. Proc Natl Acad Sci U S A, 104(43), 16834-16839.
侯尚緯. (2017). 建立在酵母菌中脂質和蛋白質結合關係資料庫. 成功大學電機工程學系學位論文, 1-38.
校內:2025-01-17公開