簡易檢索 / 詳目顯示

研究生: 鄭翔仁
Cheng, Xiang-Ren
論文名稱: 糖尿病蘭嶼豬以BMT凝膠治療下肢缺血之研究
Therapeutic Effects of BMT Gel on Hind Limb Ischemia in Diabetic Lanyu Pig
指導教授: 黃玲惠
Huang, Ling-Huei
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 63
中文關鍵詞: 下肢缺血蘭嶼豬糖尿病電腦斷層血管新生組織再生
外文關鍵詞: hind-limb ischemia, Lanyu pig, diabetes, computed tomography, angiogenesis, tissue regeneration
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 周邊動脈疾病 (Peripheral arterial disease, PAD)是因為周邊動脈血管中斑塊或脂肪堆積造成血流減少,導致血管周邊組織養分供應不足、組織壞死及纖維化。嚴重肢體缺血 (Critical limb ischemia, CLI)是周邊動脈疾病其狀況嚴重的臨床現象。臨床上高齡的糖尿病患者患有周邊動脈疾病的可能性更高。本研究對豬隻誘導糖尿病並建立下肢缺血的手術方法來模擬糖尿病CLI患者。首先使用Alloxan成功誘導豬隻高血糖並維持血糖值在400 mg/dL以上。針對成功誘導糖尿病的豬隻進行下肢的雙側外腸股動脈 (External iliac artery, EIA)血管結紮手術來建立下肢缺血的模型,並以實驗室所研發的BMT gel來治療豬隻右側的EIA結紮處。本研究中使用外觀行為模式評估、電腦斷層掃描、H&E染色、Masson’s trichrome染色及IHC染色來確認藥物療效。本研究顯示,治療後的下肢有明顯的血管新生及組織再生的情況,並且可以觀察到外觀行為模式的改善。我們的研究提供了CLI動物模式治療的良好基礎,提高了後續轉譯到臨床的成功率。

    Peripheral arterial disease (PAD) is a decrease in blood flow caused by plaque or fat accumulation in peripheral arteries, resulting in insufficient nutrient supply, tissue necrosis, and fibrosis in peripheral arterial tissues. Critical limb ischemia (CLI) is a severe clinical phenomenon of peripheral arterial disease. In clinical, older diabetes patients have a higher occurrence of peripheral arterial disease. First, induce diabetes in pigs and establish a hyperglycemic pig model to mimic diabetic patients. Alloxan was used to successfully induce hyperglycemia in pigs and maintain blood glucose levels above 400 mg/dL. Next, blood vessel ligation was performed on successfully induced diabetes pigs to induce hind limb ischemia in pigs. In this study, the bilateral external iliac artery (EIA) of the hind limbs in Lan-yu pigs was ligated to establish a model of hind limb ischemia, and the EIA ligation right site of the pigs was treated with BMT gel developed in the laboratory. In this study, behavior patterns, computed tomography, H&E staining, Masson’s trichrome staining, and IHC staining were used to confirm BMT gel efficacy. In this study shows that the hind limbs after treatment have obvious angiogenesis and tissue regeneration, and the improvement of appearance and behavior can be observed. Our research provides a great basis for the treatment of CLI animal models and improves the success rate of subsequent clinical translation.

    中文摘要I 英文摘要II 誌謝VI 目錄VII 表目錄X 圖目錄XI 縮寫表XII 一、 研究背景1 1-1 周邊動脈疾病介紹1 1-2 糖尿病於下肢缺血的影響2 1-3 周邊動脈疾病診斷及治療4 1-4 血管新生治療對於周邊動脈疾病的影響6 1-5 下肢缺血動物模式7 1-6 研究目的9 二、材料與方法11 2-1 實驗動物11 2-2 實驗藥品11 2-3 實驗器材與儀器12 2-4 豬隻保定與麻醉14 2-5 蘭嶼豬之糖尿病誘導與血糖測試14 2-6 蘭嶼豬下肢缺血手術15 2-7 蘭嶼豬下肢缺血治療16 2-8 電腦斷層掃描 (Computer tomography)17 2-9 血壓量測比較17 2-10 外觀評分18 2-11 實驗豬隻犧牲與後續處理18 2-12 腓腸肌與比目魚肌組織固定19 2-13 實驗數據統計與會圖21 三. 結果22 3-1 蘭嶼豬隻糖尿病模式22 3-2 糖尿病蘭嶼豬下肢缺血手術及治療22 3-3 糖尿病蘭嶼豬術後外觀及行為模式評估24 3-4 糖尿病蘭嶼豬術後血壓變化24 3-5 糖尿病蘭嶼豬術後電腦斷層掃描 (Computer tomography)25 3-6 糖尿病蘭嶼豬下肢肌肉重量與H&E組織染色分析27 3-7 糖尿病蘭嶼豬Masson’s trichrome組織染色分析28 3-8 糖尿病蘭嶼豬vWF組織螢光染色分析29 3-9 糖尿病蘭嶼豬CD86組織螢光染色分析30 3-10糖尿病蘭嶼豬CD206組織螢光染色分析31 四、討論32 4-1 蘭嶼豬糖尿病模式32 4-2 蘭嶼豬下肢缺血動物模式及治療33 4-3 BMT gel治療蘭嶼豬下肢缺血之機制探討34 4-4 BMT gel治療蘭嶼豬下肢缺血之免疫相關機制35 4-5 對未來研究的建議35 4-6結論36 參考文獻38 圖表44

    鄭紫妃,改良之DIB膠於小鼠下肢缺血之治療,國立成功大學生物科技研究所碩士論文,2016。

    詹秉鈞,蘭嶼豬下肢缺血動物模式之研究,國立成功大學生物科技與產業科學系研究所碩士論文,2019

    靳椏棋,DIW膠對於糖尿病小鼠下肢缺血的作用研究,國立成功大學生物科技與產業科學系碩士論文,2021。

    戴偉城,蘭嶼豬之糖尿病誘導對於缺血下肢之影響研究,國立成功大學生物科技與產業科學系碩士論文,2022。

    Abdellaoui, A., Al-Khaffaf, H. C-reactive protein (CRP) as a marker in peripheral vascular disease. European journal of vascular and endovascular surgery 34, 18-22, 2007.

    Badin, J. K., Kole, A., Stivers, B., Progar, V., Pareddy, A., Alloosh, M., Sturek, M. Alloxan-induced diabetes exacerbates coronary atherosclerosis and calcification in Ossabaw miniature swine with metabolic syndrome. Journal of Translational Medicine 16, 1-13, 2018.

    Beebe, H. G., Dawson, D. L., Cutler, B. S., Herd, J. A., Strandness, D. E., Bortey, E. B., Forbes, W. P. A new pharmacological treatment for intermittent claudication:: results of a randomized, multicenter trial. Archives of Internal Medicine 159, 2041-2050, 1999.

    Boullion, R. D., Mokelke, E. A., Wamhoff, B. R., Otis, C. R., Wenzel, J., Dixon, J. L., Sturek, M. Porcine model of diabetic dyslipidemia: insulin and feed algorithms for mimicking diabetes mellitus in humans. Comparative Medicine 53, 42-52, 2003.

    Cimminiello, C. P. A. D. PAD: Epidemiology and pathophysiology. Thrombosis Research 106, 295-301, 2002.

    Chen, M., Fan, H., Ledford, B. T., Farah, Z., Barron, C., Liu, Z., He, J. Q. Impacts of femoral artery and vein excision versus femoral artery excision on the hindlimb ischemic model in CD-1 mice. Microvascular research 110, 48-55, 2017.

    Criqui, M. H., Ho, L. A., Denenberg, J. O., Ridker, P. M., Wassel, C. L., McDermott, M. M. Biomarkers in peripheral arterial disease patients and near-and longer-term mortality. Journal of vascular surgery 52, 85-90, 2010.

    Deppen, J. N., Ginn, S. C., Kim, N. H., Wang, L., Voll, R. J., Liang, S. H., Levit, R. D. A Swine hind limb ischemia model useful for testing peripheral artery disease therapeutics. Journal of Cardiovascular Translational Research 14, 1186-1197, 2021.

    Gao, Y., Aravind, S., Patel, N. S., Fuglestad, M. A., Ungar, J. S., Mietus, C. J., Carlson, M. A. Collateral development and arteriogenesis in hindlimbs of swine after ligation of arterial inflow. Journal of Surgical Research 249, 168-179, 2020.

    Halperin, Jonathan L. Evaluation of patients with peripheral vascular disease. Thrombosis Research 106, 303-311, 2002.

    Han, J., Luo, L., Marcelina, O., Kasim, V., Wu, S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics 12, 5015-5021, 2022.

    Hankey, G. J., Norman, P. E., Eikelboom, J. W. Medical treatment of peripheral arterial disease. Jama 295, 547-553, 2006.

    Hennion, D. R., Siano, K. A. Diagnosis and treatment of peripheral arterial disease. American family physician 88, 306-310, 2013.

    Hirsch, A. T., Criqui, M. H., Treat-Jacobson, D., Regensteiner, J. G., Creager, M. A., Olin, J. W., Hiatt, W. R. Peripheral arterial disease detection, awareness, and treatment in primary care. The Journal of the American Medical Association 286, 1317-1324, 2001.

    Inampudi, C., Akintoye, E., Ando, T., Briasoulis, A. Angiogenesis in peripheral arterial disease. Current Opinion in Pharmacology 39, 60-67, 2018.

    Iwabayashi, M., Taniyama, Y., Sanada, F., Azuma, J., Iekushi, K., Kusunoki, H., Morishita, R. Role of serotonin in angiogenesis: induction of angiogenesis by sarpogrelate via endothelial 5-HT1B/Akt/eNOS pathway in diabetic mice. Atherosclerosis 220, 337-342, 2012.

    Jetten, N., Verbruggen, S., Gijbels, M. J., Post, M. J., De Winther, M. P., & Donners, M. M. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17, 109-118, 2014.

    Khaled, S., Abdelaziz, R. R., Suddek, G. M., Elshaer, S. L. Candesartan protects against unilateral peripheral limb ischemia in type-2 diabetic rats: possible contribution of PI3K-Akt-eNOS-VEGF angiogenic signaling pathway. International Immunopharmacology 116, 109817, 2023.

    Kolodgie, F.D., Pacheco, E., Yahagi, K., Mori, H., Ladich, E., and Virmani, R. Comparison of particulate embolization after femoral artery treatment with IN. PACT Admiral versus Lutonix 035 paclitaxel-coated balloons in healthy swine. Journal of Vascular and Interventional Radiology 27, 1676-1685, 2016.

    LENZEN, Sigurd. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia 51, 216-226, 2008.

    Liu, J., Geng, X., Hou, J., & Wu, G. New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell International 21, 1-7, 2021.

    Long, C. A., Timmins, L. H., Koutakis, P., Goodchild, T. T., Lefer, D. J., Pipinos, I. I., Brewster, L. P. An endovascular model of ischemic myopathy from peripheral arterial disease. Journal of vascular surgery 66(3), 891-901, 2017.

    Lu, Z. Y., Li, R. L., Zhou, H. S., Huang, J. J., Su, Z. X., Qi, J., Duan, J. L. Therapeutic ultrasound reverses peripheral ischemia in type 2 diabetic mice through PI3K-Akt-eNOS pathway. American journal of translational research, 8, 3666, 2016.

    Mohler, E.R., Sehgal, C.M., Ferrari, V.A., Parmacek, M., Shih, A., and Wilensky, R.L. A novel ultrasound method for evaluation of collateral development in limb ischemia. Vascular Medicine 7, 169-175, 2002.

    Mohler III, Emile R. Peripheral arterial disease: identification and implications. Archives of Internal Medicine 163, 2306-2314, 2003.

    Morley, R. L., Sharma, A., Horsch, A. D., Hinchliffe, R. J. Peripheral artery disease. British Medical Journal 360, 5842-5849, 2018.

    Narula, N., Dannenberg, A.J., Olin, J.W., Bhatt, D.L., Johnson, K.W., Nadkarni, G., Min, J., Torii, S., Poojary, P., Anand, S.S., Bax, J.J., Yusuf, S., Virmani, R., and Narula, J. Pathology of Peripheral Artery Disease in Patients With Critical Limb Ischemia. Journal of the American College of Cardiology 72, 2152-2163, 2018.

    Nguyen, H., Koh, J. Y., Li, H., Islas‐Robles, A., Venkata, S. P. M., Wang, J. M., Monks, T. J. A novel imidazolinone metformin‐methylglyoxal metabolite promotes endothelial cell angiogenesis via the eNOS/HIF‐1α pathway. The FASEB Journal 35, 2021.

    Ouriel, Kenneth. Peripheral arterial disease. The Lancet 358, 1257-1264, 2001.

    Pomposelli, F. Arterial imaging in patients with lower-extremity ischemia and diabetes mellitus. Journal of the American Podiatric Medical Association 100, 412-423, 2010.

    Radenković, M., Stojanović, M., Prostran, M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. Journal of pharmacological and toxicological methods 78, 13-31, 2016.

    Rafiq, K., Sherajee, S. J., Fan, Y. Y., Fujisawa, Y., Takahashi, Y., Matsuura, J., Nishiyama, A. Blood glucose level and survival in streptozotocin-treated human chymase transgenic mice. Chin J Physiol 54, 30-5, 2011.

    Raval, Z., Losordo, D. W. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circulation Research 112, 1288-1302, 2013.

    Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P., Hennekens, C. H. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 97, 425-428, 1998.

    Ridker, P. M., Stampfer, M. J., Rifai, N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein (a), and standard cholesterol screening as predictors of peripheral arterial disease. Jama 285, 2481-2485, 2001.

    Rowe, V. L., Lee, W., Weaver, F. A., Etzioni, D. Patterns of treatment for peripheral arterial disease in the United States: 1996-2005. Journal of vascular surgery 49, 910-917, 2009.

    Ruiter, M. S., Van Golde, J. M., Schaper, N. C., Stehouwer, C. D., Huijberts, M. S. Diabetes impairs arteriogenesis in the peripheral circulation: review of molecular mechanisms. Clinical science 119, 225-238, 2010.

    Silvestre, J. S., Tamarat, R., Ebrahimian, T. G., Le-Roux, A., Clergue, M., Emmanuel, F., Lévy, B. I. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circulation Research 93, 114-123, 2003.

    Singh, T. P., Morris, D. R., Smith, S., Moxon, J. V., Golledge, J. Systematic review and meta-analysis of the association between C-reactive protein and major cardiovascular events in patients with peripheral artery disease. European Journal of Vascular and Endovascular Surgery 54, 220-233, 2017.

    Slovut, D. P., Sullivan, T. M. Critical limb ischemia: medical and surgical management. Vascular medicine 13, 281-291, 2008.

    Sticchi, E., Sofi, F., Romagnuolo, I., Pratesi, G., Pulli, R., Pratesi, C., Fatini, C. eNOS and ACE genes influence peripheral arterial disease predisposition in smokers. Journal of vascular surgery 52, 97-102, 2010.

    Thiruvoipati, T., Kielhorn, C. E., Armstrong, E. J. Peripheral artery disease in patients with diabetes: Epidemiology, mechanisms, and outcomes. World journal of diabetes 6, 961, 2015.

    Vacas, S., Cole, D. J., Cannesson, M. Cognitive decline associated with anesthesia and surgery in older patients. JAMA 326, 863-864, 2021.

    Voskuil, M., Van Royen, N., Hoefer, I. E., Seidler, R., Guth, B. D., Bode, C., Buschmann, I. R. Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. American Journal of Physiology-Heart and Circulatory Physiology 284, 1422-1428, 2003.

    Zhou, C., Kuang, Y., Li, Q., Duan, Y., Liu, X., Yue, J., Zhang, L. Endothelial S1pr2 regulates post-ischemic angiogenesis via AKT/eNOS signaling pathway. Theranostics 12, 5172, 2022.

    無法下載圖示 校內:2028-08-24公開
    校外:2028-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE