| 研究生: |
林家齊 Lin, Chia-Chi |
|---|---|
| 論文名稱: |
基於狀態空間表示之精密單點定位精度評估:PPP-RTK和SSR-post Accuracy assessment of state space representation-based precise point positioning: PPP-RTK and SSR-post |
| 指導教授: |
楊名
Yang, Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 精密單點定位 、狀態空間表示 、即時動態精密單點定位 、基於狀態空間表示之後處理精密單點定位 |
| 外文關鍵詞: | Precise single point positioning (PPP), state space representation (SSR), PPP-RTK, SSR-post |
| 相關次數: | 點閱:74 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
狀態空間表示(State Space Representation, SSR)是一種改正訊息的傳輸格式, SSR僅需由計算中心廣播改正訊息給使用者進行定位,為單向通訊傳輸,因此,SSR所需要之傳輸頻寬較小,能提供更多使用者同時進行定位解算,對於未來定位應用發展極具潛力。目前內政部國土測繪中心已初步建立了SSR的即時動態精密單點定位服務:內政部國土測繪中心即時動態精密單點定位服務(PPP-RTK, Real-Time Kinematic Precise Point Positioning)以及SSR後處理定位服務:內政部國土測繪中心基於狀態空間表示之後處理精密單點定位服務(SSR-post)。本研究在臺灣南部五個GNSS測站進行PPP-RTK以及網路RTK (Network RTK, NRTK)的定位成果比對,各測站都有兩段12小時以上的定位成果。PPP-RTK在各測站固定解百分比大致落在20-50%,NRTK在各測站固定解百分比大致落在80-100%。PPP-RTK的固定解平面均方根誤差(Root Mean Square Error, RMSE)值大致落在7-14cm,高程RMSE值大致落在28-37cm;NRTK的固定解平面RMSE值大致落在2-7cm,高程RMSE值大致落在13-18cm,目前PPP-RTK的固定解百分比以及固定解RMSE值尚未到達NRTK的標準。本研究觀察到PPP-RTK在TECU值較高的時間段無法獲得固定解,這對於位在中低緯度、電離層變動較活躍的臺灣有顯著影響,也是造成PPP-RTK固定解百分比較低的主要原因。本研究亦利用33個GNSS測站之觀測檔進行了SSR-post定位測試,並將成果與加拿大後處理精密單點定位服務(Canadian Spatial Reference System PPP, CSRS-PPP)以及臺灣線上精密單點定位服務(Taiwan Online Precise Point Positioning Service, TOPS)的成果進行比對。目前SSR-post與CSRS-PPP以及TOPS存在平面13-30cm、高程將近40cm的差異,從33個站的平均誤差來看,SSR-post在高程方向有系統誤差的存在。綜觀來看,PPP-RTK以及SSR-post還尚未可以提供使用者進行穩定的定位服務,期待未來內政部國土測繪中心開發的基於SSR之PPP定位服務能再改善,提供更多使用者同時進行定位服務。
State Space Representation (SSR) is a type of message format. The advantage of SSR is that SSR only require the computing center to broadcast the correction message to users, so SSR is a one-way transmission message format. The transmission bandwidth of SSR is relatively low. As the result, SSR can provide more users to connect to the computing center simultaneously, which is the reason why SSR has great potential for the development of future positioning applications. Currently, the National Land Surveying and mapping Center (NLSC) in Taiwan has initially established a real-time kinematic positioning service using SSR called Real-Time Kinematic Precise Point Positioning (PPP-RTK), and a post-processing positioning service using SSR called SSR-post. In this study, the positioning accuracy of PPP-RTK and Network RTK (NRTK) is compared in five different stations, each stations have two periods of positioning results lasting more than 12 hours. The fixed solution percentage of PPP-RTK at each station is about 20-50%, and the fixed solution percentage of NRTK at each station is about 80-100%. The horizontal RMSE of the PPP-RTK fixed solutions falls roughly between 7-14cm, and the vertical RMSE falls roughly between 28-37cm. As for NRTK, the horizontal RMSE of the NRTK fixed solutions falls roughly between 2-7cm, and the vertical RMSE falls roughly between 13-18cm. In this study, the fixed solution percentage and fixed solution RMSE value of PPP-RTK have not yet reached the NRTK standard. Also this study shows that PPP-RTK cannot obtain a fixed solution during the time period with high TECU value. This phenomenon could cause a significant impact in Taiwan since Taiwan is in low latitude area, where ionosphere is more active. This study also used the observation files of 33 GNSS stations to conduct SSR-post positioning tests and compared the results with the results of Canadian Spatial Reference System PPP (CSRS-PPP) and Taiwan Online PPP Service (TOPS). In this study, the RMSD between SSR-post, CSRS-PPP and TOPS is about 13-30cm in vertical direction and nearly 40cm in horizontal direction. To sum up, PPP-RTK and SSR-post are not yet able to provide users with stable positioning services. It is expected that both positioning services based on SSR can be improved in the future to provide more users with simultaneous positioning services.
中國衛星導航系統管理辦公室(2020)。北斗衛星導航系統空間信號接口控制文件-精密單點定位服務信號 PPP-B2b(1.0 版),北京。
許懷謙(2021)。台灣線上精密單點定位服務 (TOPS) 之設計與建立。國立成功大學測量及空間資訊所碩士論文,台南市。
Chen, X., Allison, T., Cao, W., Ferguson, K., Grünig, S., Gomez, V., Kipka, A., Köhler, J., Landau, H., Leandro, R., Lu, G., Stolz, R., Talbot, N. (2011). Trimble RTX, an innovative new approach for network RTK. ION GNSS 2011, Portland, 2011.
Choy, S., Bisnath, S., & Rizos, C. (2016). Uncovering common misconceptions in GNSS precise point positioning and its future prospect. GPS Solutions, 21(1), 13-22.
Cutugno, M., Robustelli, U., & Pugliano, G. (2022). Low-cost hardware PPP-RTK AR time-to-fix and positioning performance assessment: A preliminary static test. Italian Conference on Geomatics and Geospatial Technologies pp.48-59.
Euler, H-J (2008) Reference station network information distribution. Available at: https://www.wasoft.de/e/iagwg451/euler/euler.html (July 18, 2024)
European GNSS Agency (2019). PPP-RTK market and technology report. Available at: https://www.euspa.europa.eu/sites/default/files/calls_for_proposals/rd.03_-_ppp-rtk_market_and_technology_report.pdf (July 18, 2024)
Ferguson, K., Urquhart, L., & Leandro, R. (2020). SPARTN: The first open GNSS data standard that enables safe and accurate GNSS localization for automotive applications. Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020) (pp. 2092-2106).
Gao, Y. (2006). Precise point positioning and its challenges. Inside GNSS, 1, 16-18. GPS.GOV. Current and future satellite generations. Retrieved from: https://www.gps.gov/systems/gps/space/ (July 18, 2024)
GEO++ (2015). GEO++ SSR for network-RTK, PPP and PPP-RTK. Geo++ SSR Flyer Version 3.
GEO++ (2022). State Space Representation Format (SSRZ). Geo++ SSRZ Document Version 1.1.2.
Grinter, T., & Janssen, V. (2012). Post-processed precise point positioning: a viable alternative? Paper presented at the Seventeenth Association of Public Authority Surveyors Conference, Wollongong, Australia, 19-21 March.
Hirokawa, R., Sato, Y., Fujita, S., Miya, M. (2016). Compact SSR messages with integrity information for satellite based PPP-RTK service. ION GNSS+ 2016, Portland, Oregon, September 12-16, 2016.
Hirokawa, R., Fernández-Hernández, I., & Reynolds, S. (2021). PPP/PPP-RTK open formats: overview, comparison, and proposal for an interoperable message. Navigation: Journal of the Institute of Navigation, 68(4), 759-778.
Kee, C., & Parkinson, B. W. (1996). Wide area differential GPS (WADGPS): Future navigation system. IEEE Transactions on Aerospace and Electronic Systems, 32(2), 795-808.
Landau, H., Vollath, U., & Chen, X. (2002). Virtual reference station systems. Journal of Global Positioning Systems, 1(2), 137-143.
Langley, R. B. (1998). RTK GPS. GPS World, 9(9), 70-76.
Li, X., Wang, B., Li, X., Huang, J., Lyu, H., & Han, X. (2022). Principle and performance of multi-frequency and multi-GNSS PPP-RTK. Satellite Navigation, 3(1), 7.
Li, X., Huang, J., Li, X., Shen, Z., Han, J., Li, L., & Wang, B. (2022). Review of PPP–RTK: Achievements, challenges, and opportunities. Satellite Navigation, 3(1), 28.
NovAtel (2015). An introduction to GNSS, 2dn edition. NovAtel Inc., Canada.
RTCM Special Committee (2016). RTCM Standard 10403.3. Arlington, Virginia, USA.
Teunissen, P., Odijk, D., & Zhang, B. (2010). PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution. J Aeronaut Astronaut Aviat Ser A, 42(4), 223-230.
Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The Use of Artificial Satellites for Geodesy, 15, 247-251.
Teunissen, P., & Montenbruck, O. (2017). Springer handbook of global navigation
satellite systems. Cham, Switzerland: Springer.
Wanninger, L. (1999). The performance of virtual reference stations in active geodetic GPS-networks under solar maximum conditions. In Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999), 1419-1428.
Wells, D., Beck, N., Delikaraoglou, D., Kleusberg, A., Krakiwsky, E., Lachapelle, G., Langley, R., Nakiboglu, M., Schwarz, K., Tranquilla, J., Vanicek, P. (1999). University of New Brunswick handbook of Guide to GPS positioning. Fredericton, N.B. Canada.
Wübbena, G., Bagge A., Schmitz M. (2001). Network-based techniques for RTK applications. GPS JIN 2001, Tokyo, Japan, 2001.
Wübbena, G., Schmitz, M., Bagge, A. (2005). PPP-RTK: precise point positioning using state-space representation in RTK networks. ION GNSS-05, Long Beach, California, September 13-16 2005.
Wübbena, JB., Wübbena, G. GNSMART 2.0 (2017). 4th EUPOS Technical Meeting, Bratislava, Slovakia, 21-22 November 2017.
Yang, M., H.-C. Hsu, and F.-Y. Chu (2024) Taiwan online precise point positioning service (TOPS): methodology and test results, Journal of Surveying Engineering-ASCE, 150(3), 04024007.