| 研究生: |
湯發民 Tang, Fa-Ming |
|---|---|
| 論文名稱: |
一圓盤飄落之流場與其周圍壓力震盪之研究 Analysis of flow field and Pressure fluctuation for a falling disk. |
| 指導教授: |
林三益
Lin, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 六自由度 、重疊網格 、快速複利葉轉換 、動態網格 、DNS 、自由落體 、三維不可壓縮奈維爾-史托克方程式 |
| 外文關鍵詞: | Computation Fluid dynamics, six-degree of freedom, overset mesh, Direct Numerical Simulation |
| 相關次數: | 點閱:93 下載:28 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在以計算流體力學模擬一剛體圓盤在特定之無因次參數下模擬自由落體的六自由度運動行為與流場分析,並取周圍流場監測點之壓力,觀察其振盪情形並分析其週期性與運動行為關係。
流場計算使用商業計算流體力學軟體Ansys Fluent,用二階準確度直接求解三維非穩態不可壓縮奈維爾-史托克方程式。網格用Ansys ICEM 做為網格劃分之工具,分別產生圓盤周圍之結構性主網格與運動場域之結構動態網格,在分別匯入Ansys Fluent中做重疊網格的處理。
在物理模型上以穩態與非穩態的中低雷諾數自由流流經一固定圓盤,分析其所受之升阻力與流場做為靜態上的驗證;動態上模擬一顆圓球墜落於不同密度與黏滯係數之流體,與文獻比對其位移時間圖與速度對時間圖做為動態上的驗證。
本研究探討的無因次物理參數有無因次轉動慣量、阿基米德數及平均雷諾數,在三組不同的物理參數下,圓盤分別以固定週期與位移來回擺盪的簡協飄移(fluttering)、不停的項同一水平方向做翻滾(tumbling)與繞一軸心做打轉的螺旋(spiral)的運動行態飄落。本研究觀察其在三種不同運動行態下的運動與受力情形,並取樣周圍流場若干點作為壓力監測點,以快速傅立葉轉換分析壓力震盪頻率。
The vortex structure, pressure fluctuation, and three kinds of behavior of motion for a free falling disk are simulated in this study. The three kinds of behaviors of motion are fluttering, tumbling, and spiral. There are three dimensionless parameters are chosen to produce the kinds of behavior of motion, which are dimensionless moment of inertia I^*, Archimedes Number Ar, and Reynolds Number Re, will determine the behavior of motion in this study
For each case, we analysis the periodicities about the disk’s motions, the forces acted on the disk, and the pressure fluctuation monitored at some points in the middle field. By analyzing the FFT spectrogram, the results show that vertical disk motion has same period as the pressure fluctuation. We also found that the vortex dominates the pressure distribution in the flow field as well as on the disk.
[1] D.Marshell, T.E.Stanton, and F.R.S., On the Eddy System in the Wake of Flat Circular Plates in Three Dimension Flow. The Royal Society, 1930.
[2] F.W.Roos, and W.W.Willmarth, Some Experimental Results on Sphere and Disk Drag, AIAA Journal, Vol 9, No.2 1971.
[3] A.R.Ashenoy,amd C.Kleinstreuer, Flow Over a Thin Circular Disk from Low to Moderate Reynolds number. Journal of Fluid Mechanics, Vol.605, pp. 253-262, 2008.
[4] J.R.Calvert, Experiment on the Flow Past an Inclined Disk, Journal of Fluid Mechanics, Vol.29, part 4, pp.691-703, 1967.
[5]S.Gao, L.B.Tao, X.L.Tian, and J.M.Yang, Journal of Fluid Mechanics. Vol.851, pp. 687-714, 2018.
[6] X.L.Tian, Z.H.Hu, and J.M.Yang. Direct Numerical Simulation of Flow Past an Inclined Disk Journal of Fluid and Structures 72, pp.152-168, 2017.
[7] W.W.Willmarth, N.E.hawk, and R.L.Harvey. Steady and Unsteady Motions and Wakes of Free Falling Disk, The Physics of Fluids 7, 1964.
[8] P.C.Fernandes, F.risso, P.Ern, and J.Magnaudet. Oscillatory Motion and Wake Instability of Freely Rising Axisymmetric Bodies, Journal of Fluid Mechanics, Vol.573, pp.479-502, 2007.
[9] H.J.Zhong, S.Y.Chen, and C.B.Lee, Experimental of Free Falling disks: Transition from Planar Zigzag to Spiral. The Physics of Fluids 23, 011702, 2011.
[10] F.Auguste, J.Magnaudet, and D.Fabre, Falling Style of Disks, Journal of Fluid Mechanics, Vol.719, pp.388-405, 2013.
[11] P.C.Fernandes, P.Ern, Risso, J.Magnaudet. On the zigzag Dynamics of Freely Moving Axisymmetric Bodies. Physics of Fluids 17, 098107, 2005.
[12] S.Scoot M.Murman, M.J.Aftosmis, and M.J.Berger. Implicit Approaches for Moving Boundaries, 41st Aerospace Sciences Meeting and Exhibit, 2003.
[13] S.Y.Lin, Y.H.Chin, J.J.Hu, and Y.C.Chen, A Pressure Correction Method for Fluid-Particle Interaction Flow:Direct-Forcing Method and Sedimentation Flow, International Journal for Numerical Methods in Fluid, Vol.67, pp.1771-1798, 20113
[14] A.T.Cate, C.H.Nieuwstad, J.J.Derksen, and H.E.A.Van Den Akker, Particle Imaging Velocimetry Experiments and Lattice-Boltzmann Simulations on a Sigle Sphere SettlingUnder Gravity, Physics of Fluid 14, 4012, 2002.
[15] H.J.Zhong, C.B. Lee, Z.Su, S.Y.Chen, M.G.Zhou, and J.Z.Wu. Experimental Investigation of Freely Falling Thin Disks, Part 1. The Flow Structures and Reynolds Number Effects on the Zigzag Motion. Journal of Fluid Mechanics, Vol.716, pp.228-250, 2013.
[16] M.Chrust, G.Bouchet, J.Dusek. Numerical simulation of the dynamcis of freely falling discs, Physics of Fluids 25, 044102, 2013.
[17] S.B.Field, M.Klaus, M.G.Moose, and F.Nori. Chaotic dynamics of falling disks, Nature 388, 252-254, 1997.
[18] C.C.Chueh, P.K.Wang, and T.P.Hashino. Numerical Study of Motion of Falling Conical Graupel. Atmospheric Reseach 199(2018)82-92.
[19] K.O.L.F.Jayweera and B.J.Mason. The Behaviour of Freely Falling Cylinders and Cones in a Viscous Fluid, Journal of Fluid Mechanics, Vol.22, part 4, pp.709-720, 1965.
[20] A.Andersen, U.Pesavento, and Z.J.Wang. Unsteady Aerodynamics of Fluttering and Tumbling Plates, Journal of Fluid Mechanics, Vol. 541, pp.65-90, 2005.
[21] P.Ern, F.Risso, D.Fabre, and J.Magnaudet. Wake-Induced Oscillatory Paths of Bodies Freely Rising or Falling in Fluids, Annual Reviews Fluid Mechanics, 44:97-121,2012.
[23]P.Meliga, J.M.Chomaz, and D.Sipp. Global Mode Interaction and Pattern Selection In the Wake of a Disk : a Weakly Nonlinear Expansion, Journal of Fluid Mechanics, Vol.633, pp.159-189. 2009.
[24]P.C.Fernandes, F.Risso, P.Ern and Jacques Magnaudet, Osillatory Motion and Wake Instability of Freely Rising Axisymmetric Bodies, Journal of Fluid Mechanics, Vol.573, pp.479-502, 2007.
[25] R.J.Wu, and S.Y.Lin, The Flow Of a Falling Ellipse: Numerical Method and Classification, Jounary of Fluid Mechanics, Vol.31, No.6, 2015.
[26] L.Vicent, W.S.Shambaugh and E.Kanso, Holes Stablize Freely Falling Coins, Journal of Fluid Mechanics, Vol.801, pp.250-259.2016.
[27] Haervig, Jakob, Jensen, A.Lyhne; Pedersen, Marie Cecilie; and Sorensen Henrik, General Observations of the Time-Dependent Flow Field Around Plates in Free Fall, Fluids Engineering Conference [12708] (pp.978-983), 2015.
[28] A.BelMonte, H.Eisenberg, and E.Moses, From Flutter to Tumble: Inertial Drag and Froude Similarity in Falling Paper, Physical Review Letters, Vols.81, Number 2. 13 July 1998.
[29]戴宏源,重疊式網格流場數值方法之發展,成功大學航太所九十一學年度碩士論文,2002。