簡易檢索 / 詳目顯示

研究生: 陳柏穎
Chen, Poying
論文名稱: 利用化學氣相沉積法製備具高熱傳導及高電阻之三層UNCD-MCD-UNCD鑽石薄膜結構
UNCD-MCD-UNCD Tri-layer CVD Diamond Films with High Thermal Conductivity and Electrical Resistivity
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 72
中文關鍵詞: 三層鑽石薄膜結構化學氣相沉積電絕緣性熱傳導
外文關鍵詞: Tri-layer diamond structure, CVD, Thermal conductivity, Electrical insulation
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體技術發展至今,晶片的散熱問題越來越棘手,如何將半導體晶片所積聚的熱量迅速的傳導到外部是一個值得研究的課題,單晶鑽石具有卓越的電絕緣性、及熱傳導,是本應用的最佳材料,然而,單晶鑽石的製作條件極其嚴苛,不符合現代半導體製程之需求,因此只能以相對低溫低壓成長之多晶鑽石薄膜替代,但鑽石晶粒中的缺陷及雜質,會拉低薄膜的品質;再者,隨著多晶鑽石的晶界密度增加,晶界所造成的聲子散射現象越趨嚴重、晶界中所含有的石墨等導電碳量也隨之增加,使得薄膜的導電度上升、熱傳導變差;最後,製程氣體中含有大量的氫氣,因此鑽石薄膜表面被氫化,使得鑽石表面呈現負的電子親和力,發生電荷轉移參雜效應,讓原本不導電的鑽石薄膜變為P型半導體。
    上述三點會使的鑽石薄膜的特性變差,本論文尋求最佳化之化學氣相沉積大面積多晶鑽石薄膜,以追求漏電流極小的高導熱鍍膜,所採用的策略是利用多層不同特性與目的之多晶鑽石薄膜,達成晶粒太小適中且晶體品質佳的三層鑽石薄膜結構,首先以奈米鑽石薄膜作為多晶鑽石薄膜的高密度晶種,再以奈米鑽石薄膜保護多晶鑽石鍍膜,所得三層結構之鑽石鍍膜除了具有良好的導熱能力之外,漏電流也極小。

    For semiconductor technology, thermal issues are becoming more and more serious—and getting much more attention. Chips need coatings with both high thermal conductivity and high electrical insulation for isolating electronic devices and interconnects while spreading heat generated by stacked integrated circuits effectively. Single crystalline diamond possesses excellent electrical insulation and thermal conductivity, which is a perfect candidate. However, a low temperature and large-area coating of single crystalline diamond is difficult to achieve. So we use polycrystalline diamond films instead. But for polycrystalline diamond films with many grain boundaries, the severe phonon scattering and electrically conductive graphitic carbon contents in grain boundaries cause the electrical insulation and the thermal conductivity to decrease.
    This thesis reports a large-area tri-layer Chemical vapor deposition (CVD) diamond structure to achieve sustainable 10e10 Ωcm electrical resistivity in the ambient atmosphere. A nanodiamond base layer provides a high-density diamond seeding layer for the polycrystalline diamond film to contain few voids and graphitic carbon in the grain boundaries. The second nanodiamond film is used to encapsulate the de-hydrogenated microcrystalline diamond film to prevent degradation of electrical resistance due to the ambient atmosphere.

    摘要 I Abstract II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1前言 1 1.2 鑽石簡介 2 1.2.1 鑽石結構 3 1.2.2 鑽石的特性 4 1.2.3 鑽石的應用 6 1.2.4 天然鑽石 7 1.2.5 人造鑽石 8 1.3 研究動機 10 第二章 文獻回顧與理論基礎 12 2.1 CVD成核機制 12 2.1.1 機械式拋磨法 13 2.1.2 超音波震盪法 16 2.1.3 偏壓輔助成核法 18 2.2 CVD成長機制 21 2.3 CVD機台種類 23 2.3.1 直流電漿化學氣相沉積系統 23 2.3.2 熱燈絲化學氣相沉積系統 23 2.3.3 微波電漿輔助化學氣相沉積系統 25 2.4 CVD鑽石分類 26 2.4.1 微米鑽石 27 2.4.2 奈米鑽石 27 2.4.3 超奈米鑽石 29 第三章 實驗流程及儀器介紹 30 3.1 實驗流程圖 30 3.2 前置作業 31 3.2.1 基板清洗 31 3.2.2 前處理 32 3.3 鑽石薄膜沉積 33 3.4 鑽石薄膜分析 39 3.4.1 拉曼散射光譜 39 3.4.2 掃描式電子顯微鏡 41 第四章 結果與討論 44 4.1 三層結構簡介 44 4.2 MCD薄膜最佳化 45 4.3 上下兩層UNCD薄膜之影響 50 4.3.1 底層UNCD薄膜之影響 50 4.3.2 頂層UNCD薄膜之影響 53 4.4 三層結構特性量測 55 4.5 三層結構應用 60 第五章 結論與未來展望 64 參考資料 65

    [1] http://www.chemicool.com/elements/carbon.html
    [2] S.-Tong Lee, Zhangda Lin, Xin Jiang, “CVD diamond films: nucleation and growth,” Materials Science and Engineering, vol. 25, pp. 123-154, 1999.
    [3] David Saada, “Diamond and graphite properties”, 2000.
    [4] Frondel, C., U.B. Marvin, “Lonsdaleite, a new hexagonal polymorph of diamond.” Nature, vol. 214, pp. 587 - 589, 1967.
    [5] http://en.wikipedia.org/wiki/Diamond
    [6] http://en.wikipedia.org/wiki/Young's_modulus
    [7] Mingjie Liu, Vasilii I. Artyukhov, Hoonkyung Lee, Fangbo Xu, Boris I. Yakobson, “Carbyne from first principles: Chain of C atoms, a nanorod or a nanorope?” ACS Nano, 7 (11), pp. 10075-10082, 2013.
    [8] Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, “Superior Thermal Conductivity of Single-Layer Graphene.” Nano Letters, vol. 8, pp. 902-907, 2008.
    [9] http://www.diamondbladeselect.com/knowledge/basic-properties-of-diamond/
    [10] J. C. Angus, "Diamond and diamond-like films," Thin Solid Films, vol. 216, pp. 126-133, 1992.
    [11] M. N. Yoder, Synthetic Diamond: Emerging CVD Science and Technology: John Wiley & Son, 1993.
    [12] Y. Gurbuz, Onur Esame, Ibranhim Tekin, Weng P. Kang and Jimmy L. Davidson, "Diamond semiconductor technology for RF device applications," Solid-State Electronics, vol. 49, pp. 1055-1070, 2005.
    [13] 宋健民, "工業材料," 1995.
    [14] http://scimonth.blogspot.tw/2011/04/blog-post_1609.html
    [15] http://scitechvista.nsc.gov.tw/zh-tw/Articles/C/0/9/10/1/833.htm
    [16] B.V. Spitsyn, L.L. Bouilov, B.V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces,” Journal of Crystal Growth, vol. 52, pp. 219-226, 1981.
    [17] Mutsukazu Kamo, Yoichiro Sato, Seiichiro Matsumoto, Nobuo Setaka, “Diamond synthesis from gas phase in microwave plasma,” Journal of Crystal Growth, vol. 62, pp. 642-644, 1983.
    [18] J. Ristein, F. Maier, M. Riedel, M. Stammer, L. Ley, “Diamond surface conductivity experiments and photoelectron spectroscopy,” Diamond and Related Materials, vol. 10, pp. 416-422, 2001.
    [19] Williams, O. A., "Nanocrystalline diamond." Diamond and Related Materials, vol. 20, pp. 621-640, 2011.
    [20] Das, D. and R. N. Singh. "A review of nucleation, growth and low temperature synthesis of diamond thin films." International Materials Reviews, vol. 52, pp. 29-64, 2007.
    [21] S. Matsumoto, Y. Sato, M. Kamo, J. Tanaka and N. Setaka, “Chemical vapor deposition of diamond from methane–hydrogen gas,” Proc. 7th Int. Conf. on “Vacuum metallurgy”, Tokyo, Japan, Iron and Steel Institute of Japan, pp.386–391, 1982.
    [22] X. Jiang, K. Schiffmann, and C.-P. Klages, “Nucleation and initial growth phase of diamond thin films on (100) silicon,” Phys. Rev. B, vol. 50, pp. 8402-8410, 1994.
    [23] K. Mitsuda, Y. Kojima, T. Yoshida and K. Akashi, “The growth of diamond in microwave plasma under low pressure,” J. Mater. Sci., vol. 22, pp. 1557–1562, 1987.
    [24] B. Lux and R. Haubner, in R.E. Clausing, L.L. Horton, J.C. Angus and P. Koidl, “Diamond and Diamond-like Films and Coatings,” Plenum Press, New York, p. 579, 1991.
    [25] Sumio Iijima, Yumi Aikawa and Kazuhiro Baba, “Growth of diamond particles in chemical vapor deposition,” Journal of Materials Research, vol.6, pp. 1491-1497, 1991.
    [26] M. Ihara, H. Komiyama and T. Okubo, “Correlation between nucleation site density and residual diamond dust density in diamond film deposition,” Appl. Phys. Lett., vol.65, p. 1192, 1994
    [27] W.A. Yarbrough, Y. Tzeng, M. Yoshikawa, M. Murakawa and A. Feldman, “Applications of Diamond Films and Related Materials”, Elsevier, Amsterdam, p. 25, 1991.
    [28] Paul A. Dennig, Hiromu Shiomi, David A. Stevenson, Noble M. Johnson, “Influence of substrate treatments on diamond thin film nucleation,” Thin Solid Films, vol. 212, pp. 63-67, 1992.
    [29] P.A. Dennig and D.A. Stevenson, ” Influence of substrate topography on the nucleation of diamond thin films, ” Appl. Phys. Lett., vol. 59, p. 1562, 1991.
    [30] Angus, John C., Yaxin Wang, and Mahendra Sunkara, "Metastable growth of diamond and diamond-like phases," Annual Review of Materials Science, vol. 21, pp. 221-248, 1991.
    [31] H. Maeda, S. Masuda, K. Kusakabe and S. Morooka, “Nucleation and growth of diamond in a microwave plasma on substrate,” J. Cryst. Growth, vol. 121, pp. 507–515, 1992.
    [32] B. Singh, Y. Arie, A. W. Levine and O. R. Mesker, “Effects of filament and reactor wall materials in low-pressure chemical vapor deposition synthesis of diamond,” Appl. Phys. Lett., vol. 52, pp. 451–452, 1988.
    [33] Ascarelli, P., and S. Fontana, "Dissimilar grit-size dependence of the diamond nucleation density on substrate surface pretreatments," Applied surface science, vol. 64, pp.307-311, 1993.
    [34] Iijima, Sumio, Yumi Aikawa, and Kazuhiro Baba, "Early formation of chemical vapor deposition diamond films," Applied physics letters, vol. 57, pp. 2646-2648, 1990.
    [35] Akhvlediani, R., et al., "Nanometer rough, sub-micrometer-thick and continuous diamond chemical vapor deposition film promoted by a synergetic ultrasonic effect," Diamond and related materials, vol. 11, pp. 545-549, 2002.
    [36] Pradhan, Debabrata, et al., "Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature," Diamond and related materials, vol. 15, pp. 1779-1783, 2006
    [37] O. Shenderova, S. Hens, and G. McGuire, "Seeding slurries based on detonation nanodiamond in DMSO," Diamond and Related Materials, vol. 19, pp. 260-267, 2010.
    [38] H. Liu and D. D. Dandy, “Studies on nucleation process in diamond CVD: an overview of recent developments,” Diamond Relat. Mater, vol. 4, pp. 1173–1188, 1995.
    [39] S. Yugo, T. Kanai, T. Kimura and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition,” Appl. Phys. Lett., vol. 58, pp. 1036–1038, 1991.
    [40] B. R. Stoner, G.-H. M. Ma, S. D. Wolter and J. T. Glass, “Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy,” Phys. Rev. B, vol. 45, pp. 11067–11084, 1992.
    [41] J. Robertson, "Mechanism of bias-enhanced nucleation and heteroepitaxy of diamond on Si," Diamond and Related Materials, vol. 4, pp. 549-552, 1995.
    [42] Williams, O. A. and M. Nesladek. "Growth and properties of nanocrystalline diamond films." Physica Status Solidi a-Applications and Materials Science, vol. 203, pp. 3375-3386, 2006.
    [43] Paul W. May, “Diamond thin films: a 21st-century material,” Phil. Trans. R. Soc. Lond., vol. 358, pp. 473–495, 2000.
    [44] O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman, "Growth, electronic properties and applications of nanodiamond," Diamond and Related Materials, vol. 17, pp. 1080-1088, 2008.
    [45] D. M. Gruen, “Nanocrystalline diamond films”, Annual Review of Materials Science, vol. 29, pp. 211-259, 1999.
    [46] T. Lin, et al., “Compositional mapping of the argon-methane-hydrogen system for polycrystalline to nanocrystalline diamond film growth in a hot-filament chemical vapor deposition system”, Applied Physics Letters, vol. 77, pp. 2692-2694, 2000.
    [47] King, D., et al., "Scaling the microwave plasma-assisted chemical vapor diamond deposition process to 150–200 mm substrates,” Diamond and Related Materials, vol. 17, pp. 520-524, 2008.
    [48] SpringThorpe, A. J., and A. Majeed, "Epitaxial growth rate measurements during molecular beam epitaxy," Journal of Vacuum Science & Technology B, vol. 8, pp. 266-270, 1990.
    [49] T. Vandevelde, T.D. Wu, C Quaeyhaegens, J Vlekken, M D'Olieslaeger and L Stals, "Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition," Thin Solid Films, vol. 340, pp. 159-163, 1999.
    [50] Z. Lu, L. Zhang, X. Ma, N. Yao, and B. Zhang, "The growth process and field emission characteristics of spherical aggregates of polycrystalline diamond flakes," physica status solidi (c), vol. 9, pp. 41-43, 2012.
    [51] http://en.wikipedia.org/wiki/Scanning_electron_microscope
    [52] Y. Tzeng, C.C. Tin, R. Phillips, Y. Chen, “High Electrical-Resistivity Diamond Films Deposited from an Oxyacetylene Flame,” Applied Physics Letters, 57, 8, pp. 789-791, 1990.
    [53] Ji-heng Jiang, et al. “Effects of gas residence time on microwave plasma enhanced CVD of ultrananocrystalline diamond in mixtures of methane and argon without hydrogen or oxygen additives,” Diamond & Related Materials 24, pp3 153–157, 2012.
    [54] Changwei Chen, et al. “RF MEMS Capacitive Switch with Leaky Nanodiamond Dielectric Film”, Diamond and Related Materials 20, 4, pp. 546-550, 2011.
    [55] Y. Tzeng and Y.K. Liu, “Diamond CVD by microwave plasmas in argon-diluted methane without or with 2% hydrogen additive,” Diamond and Related Materials 14, 3-7, pp. 261-265, 2005.
    [56] Mallik, Awadesh K., et al., "Influence of the microwave plasma CVD reactor parameters on substrate thermal management for growing large area diamond coatings inside a 915MHz and moderately low power unit," Diamond and Related Materials, vol. 30, pp. 53-61, 2012.
    [57] King, D., et al., "Scaling the microwave plasma-assisted chemical vapor diamond deposition process to 150–200 mm substrates," Diamond and Related Materials, vol. 17, pp. 520-524, 2008.
    [58] V. Mortet, O. Elmazria, M. Nesladek, M. B. Assouar, G. Vanhoyland, J. D'Haen, M. D'Olieslaeger, and P. Alnot, "Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures," Applied Physics Letters, vol. 81, pp. 1720-1722, 2002.
    [59] K. E. Goodson, K. Kurabayashi, and R. F. W. Pease, "Improved heat sinking for laser-diode arrays using microchannels in CVD diamond," Ieee Transactions on Components Packaging and Manufacturing Technology Part B-Advanced Packaging, vol. 20, pp. 104-109, 1997.
    [60] E. Kohn, P. Gluche, and M. Adamschik, "Diamond MEMS — a new emerging technology," Diamond and Related Materials, vol. 8, pp. 934-940, 1999.
    [61] C.-C. Choua, J.-H. Youb, and C.-L. Wuc, "Processing and Crystal Microstructure of Porous High Pressure Crystallized Nanodiamond/UHMWPE Biomedical Nanocomposite," Advanced Materials Research, vol. 328-330, pp. 857-860, 2011.
    [62] K. Miyata, K. Saito, K. Nishimura, and K. Kobashi, "Fabrication and characterization of diamond film thermistors," Review of Scientific Instruments, vol. 65, pp. 3799-3803, 1994.
    [63] R. Müller, M. Adamschik, D. Steidl, E. Kohn, S. Thamasett, S. Stiller, H. Hanke, and V. Hombach, "Application of CVD-diamond for catheter ablation in the heart," Diamond and Related Materials, vol. 13, pp. 1080-1083, 2004.
    [64] P. Gluche, R. Leuner, A. Vescan, W. Ebert, E. Kohn, C. Rembe, S. aus der Wiesche, and E. P. Hofer, "Actuator – sensor technology on “electronic grade” diamond films," Microsystem Technologies, vol. 5, pp. 38-43, 1998.
    [65] S. Basu, W. P. Kang, J. L. Davidson, B. K. Choi, A. B. Bonds, and D. E. Cliffel, "Electrochemical sensing using nanodiamond microprobe," Diamond and Related Materials, vol. 15, pp. 269-274, 2006.
    [66] http://www.azom.com/article.aspx?ArticleID=1644
    [67] X. Xiao, J. Birrell, J.E. Gerbi, O. Auciello and J.A. Carlisle, "Low temperature growth of ultrananocrystalline diamond," Journal of Applied Physics, vol. 96, pp. 2232-2239, 2004.
    [68] J. Robertson, “Diamond-like amorphous carbon”, Materials Science & Engineering R-Reports, vol. 37, pp. 129-281, 2002.

    無法下載圖示 校內:2024-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE