| 研究生: |
尹孝元 Yin, Hsiao-Yuan |
|---|---|
| 論文名稱: |
土石流造成地表振動之觀測與研究 Studying and Monitoring the Ground Vibration Generated by Debris Flows |
| 指導教授: |
黃清哲
Huang, C. J. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 266 |
| 中文關鍵詞: | 土石流 、地聲探測器 、地表振動(地聲) 、頻率 、傳遞速率 、衰減特性 、土石流波湧 、土石流觀測站 |
| 外文關鍵詞: | debris flow monitoring station, decay rate, propagation speed, frequency, geophones, debris flows, ground vibration, underground sound, hydrophones |
| 相關次數: | 點閱:125 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為分別從實驗、理論及現場觀測探討土石流產生地表振動(或稱地聲)之特性,包括土石流地聲之頻率範圍、傳遞速度及衰減係數。本研究可分成下列五個主要部份: 1、以實驗方法探討石頭摩擦及撞擊土石材料時其地聲頻率之特性,首先了解土石基本運動型態之地聲特性後,再進行人工土石流實驗,以了解土石流地聲特性及其與上述土石基本運動型態地聲之關係。2、利用地聲探測器(geophone)探討不同類型土石流地聲之特性;土石流類型包括礫石型、一般型及泥流型。3、於土石流觀測站現場量測土石撞擊河床或於河床上滾動所產生地聲之頻率、傳遞速度及衰減係數。4、利用彈性波在孔隙介質中傳遞之理論計算土石流地聲傳遞速度,並與實驗值比較。5、分析自動化土石流觀測系統所蒐集之土石流現場之地聲資料,並探討其特性。
上述第一個部份的研究(第四章),主要是利用水中麥克風(hydrophone)探討石頭摩擦及撞擊土石材料時地聲頻率及強度。在了解土石基本運動之地聲特性後,再於人工渠道中模擬土石流,並探討其地聲頻率及強度之特性。實驗量測所得地聲時域訊號經快速傅立葉轉換(Fast Fourier Transform,FFT)及Gabor Transform(第三章)分析,以求得地聲之頻域訊號及其時間–頻率訊號,並比較兩種訊號分析方法之適用性。實驗結果顯示石頭摩擦土石材料產生之地聲頻率屬於低頻範圍,約在10到300 Hz,主要分佈在20~80 Hz之間。而石頭撞擊土石材料產生之地聲頻率在10到500 Hz之間,且低頻訊號依然明顯。此外,石頭落下的高度對地聲頻率沒有明顯的影響,但會改變地聲訊號之強度。礫石型土石流地聲頻率的範圍分佈在20-300 Hz之間,坡度愈陡或土石材料粒徑愈大,地聲強度愈強。
第二個部份的研究主要是以地聲探測器量測土石碰撞時所產生之地表振動,實驗所得地表振動之時域訊號利用快速傅立葉轉換(FFT)及Gabor Transform轉換為頻域訊號及時間–頻率訊號,以探討土石地聲之頻率、傳遞速率及隨距離衰減特性。實驗可分為兩部份,第一部份是於實驗室內量測石頭以自由落體方式撞擊水槽內之土石材料所產生之地聲。此部份之實驗主要是探討地聲探測器傾斜不同角度時所測得地聲訊號之差異(第五章)。這些資訊可提供土石流觀測示範站中地聲探測器安裝及接收訊號之參考。第二部份的實驗則是利用地聲探測器探討不同類型土石流地聲之特性(第六章);土石流類型包括礫石型、一般型及泥流型。實驗結果顯示礫石型土石流所造成地表振動的頻率主要在10到300Hz之間;而泥流型土石流地聲的頻率主要介於5到20Hz之間。一般型土石流地聲的頻率則介於兩者之間,當其土石材料中之礫石成份增加時,10到300Hz之地聲振幅會明顯增加。
第三個部份的研究主要是於土石流觀測站現場量測土石撞擊河床、或於河床上滾動所產生地聲之頻率、傳遞速度及衰減係數(第七章)。實驗地點有兩處,一處是南投縣信義鄉豐丘土石流觀測站,另一處為南投縣信義鄉神木村愛玉子溪土石流觀測站。實驗結果顯示石頭以自由落體方式撞擊豐丘野溪所得地聲頻率介於20到150Hz之間,且隨著石頭重量增加地聲之顯著頻率(superior frequency)也會降低;石頭於豐丘野溪上滾動所得地聲頻率頻率範圍與單一石頭撞擊河床所得地聲頻率頻範圍一致。土石地聲傳遞速率約為833 – 1000 m/s。神木村愛玉子溪土石地聲實驗顯示石頭撞擊河床所得地聲頻率亦介於20到150Hz之間,而土石地聲傳遞速率約為333 – 400 m/s。此外,在假設地聲為圓柱波(cylindrical wave)的情形下,本研究亦分析出地聲之衰減係數。
第四個部份的研究主要是利用彈性波在孔隙介質中傳遞的理論計算土石流地聲傳遞速度(第二章),並與實驗值比較(第七章)。本研究分別利用Gassmann理論、Biot理論及Duffy and Mindlin(1957)的球狀顆粒組合理論(sphere-pack model of granular rocks)求出彈性波在孔隙介質及飽和孔隙介質中傳遞的速度。
第五個部份的研究主要是介紹行政院農業委員會水土保持局所建置之自動化土石流觀測系統之儀器及訊號傳輸設備(第八章),並分析土石流觀測站在現場所蒐集之土石流造成地表振動訊號之特性(第九章)。文中詳細探討了2004年7月2日敏督利颱風期間在南投縣信義鄉神木村愛玉子溪量測到的台灣地區第一筆現場土石流觀測資料。由資料中得知土石流發生前河道流量明顯變小,土石流波湧前端呈現波浪狀並有巨礫集中的現象,而土石流波前通過後其流深迅速變小,前端觀測流速介於10—13 m/sec,前端流深約5.5—6 m,最大觀測粒徑約4—5m,平均流深約2m,持續時間達5分鐘之久。本文另以Gabor Transform分析土石流流動造成的地表振動訊號(亦稱土石流地聲),發現當土石流波湧抵達地聲探測器時,由於前端巨礫集中,因此地聲頻率較低,約在10到30Hz之間;而當波湧主峰通過時,頻率範圍較寬,介於10到250Hz之間;而在土石流尾端,由於石頭較小,地聲頻率主要在60-80 Hz之間。由神木村愛玉子溪現場所埋設之序列式地聲探測器的訊號求得土石流波湧的平均速度為 。此外,不同的量測地點之地質也會影響土石流地聲訊號的強度。
This work investigates the main characteristics of the ground vibrations, or sometimes called underground sounds, generated by debris flows. The ground vibrations were discussed in terms of the frequency range, the propagation speed and the decay rate. Experimental facilities were set up in the laboratory as well as in the field to measure the frequency, the phase speed and the decay rate of the ground vibrations. The source of tremor was produced by a rock that falls freely and hits a gravel bed in the laboratory experiments or a riverbed in the field experiments. Effects of different types of debris flows on the ground vibrations were also tested in a flume. These debris flows include the bouldery, the cobble-gravelly and the muddy debris flows. The field experiments were performed at the Fongciou and Shenmu (Aiyuzih creek) debris flow monitoring stations, Sinyi Township, Nantou County, Taiwan.
The ground vibration signals were detected at the early stage of this research by a hydrophone and later by geophones. The vibration signals in the time domain were analyzed using both the fast Fourier transform and the Gabor Transform to represent the signals in both the frequency and time-frequency domains. Different approaches for determining the phase speed of the elastic waves in the porous media were applied to determine the propagation speed of the ground vibrations and compare with the field test data. The ground vibration data associated with real debris flows obtained from the debris flow monitoring system were examined to reveal the properties of the ground vibrations. These data were also compared with the field test data to clarify the main source of the ground vibration and to understand the mechanism of these vibrations.
The measurement results reveal that the frequency of the underground sound generated by the rock-gravel bed friction is relatively low, being mostly between 20 and 80 Hz. In contrast, the frequency range of the collision sound is relatively higher, between 10 and 500 Hz. The frequency of the underground sound caused by the debris flows in the flume is in the range of 20-300 Hz. The field experimental data at the Fongciou debris flow monitoring station show that the frequency of the ground vibration is in the range of 20-150 Hz and the propagation speed is between 833-1000 m/s. While the experiments in Shenmu station show that the ground vibration is in the same range of 20-150 Hz and the propagation speed is about 333-400 m/s.
The frequency of ground vibration resulting from a real debris flow occurred at July 2, 2004 in Aiyuzih creek, Shenmu village, Sinyi Township, ranges within 250 Hz and mainly between 5 to 100 Hz. The superior frequency appeared at 60 Hz. The amplitude of ground vibration depends on the location where the instrument is installed.
Abramowitz, M. and Stegun, I. A. (1970), Handbook of mathematical functions, Dover, New York, N. Y., 1046.
Arattano M. (2000), On debris flow front evolution along a torrent, Phys. Chem. Earth (B), 25 (9): 733-740.
Arattano, M. (2003), Monitoring the presence of the debris-flow front and its velocity through ground vibration detectors, Third Internal Conference on Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment, edited by Rickenmann, D. and Chen, C. L., Millpress. Rotterdam, 719-730.
Arattano M. and Marchi L. (2005), Measurement of debris flow velocity through cross-correlation of instrumentation data, Natural Hazards and Earth System Sciences 5, 137-142.
Bänziger, R., and Burch, H. (1990), Acoustic sensors (hydrophones) as indicators for bed load transport in a mountain torrent, Hydrology in Mountainous Region, I. Hydrological Measurements, the Water Cycle (Proc. of two Lausanne Symposia), IAHS Publ. No. 193, 207-214.
Bary, D. E. (1992), “Acoustic Emission Technology”, Nondestructive Testing Technique, 345-377.
Berti M., Genevois, R., LaHusen, R., Simoni, A. and Tecca, P. R. (2000), Debris flow monitoring in the Acquabona Watershed on the Dolomites (Italian Alps). Phys. Chem. Earth (B), 25 (9): 707-715.
Biot, M. A. (1956a), Theory of propagation of elastic waves in a fluid-saturated porous solid, I: Low-frequency range, J. Acoust. Soc. Am., Vol. 28, 168-178.
Biot, M. A. (1956b), Theory of propagation of elastic waves in a fluid-saturated porous solid, II: Higher-frequency range, J. Acoust. Soc. Am., Vol. 28, 179-191.
Biot, M. A. (1962), Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., Vol. 33, 1482-1498.
Brigham, E. O. (1988), The Fast Fourier Transform, Prentice-Hall, Inc. A Division of Simon & Schuster Englewood Cliffs, New Jersey.
Chang, S. Y. and Lin, D. S. (1999), A study on debris-flow characteristics and detecting system, Proceedings of the 2nd debris flow conference, Hualien City, Taiwan, 84-93 [in Chinese].
Chang, S. Y. (2000), A study on detective for debris flow, Proceedings of the 2nd Cross-strait Conference on Slopeland Disasters and Environmental Protection, Taichung City, Taiwan, 161-169 [in Chinese].
Chen, J. Z., Chang, S. C. and Yeng, M. F. (1991), Characteristics of underground sound generated by debris flows and the fabrication of NJ-2 type debris-flow alarm, 2nd National Debris Flow Conference, China [in Chinese].
Chen, S. C. (2002), Investigation and analysis on hazards caused by previous debris flows and discussions on the prevention and recovery, Soil and Water Conservation Bureau, Executive Yuan, SWCB-91-046 [in Chinese].
Cheng, Y. C. (2001), Study on the underground sound generated by the debris flows, Master’s thesis, Hydraulic and Ocean Engineering of National Cheng Kung University, Tainan, Taiwan [in Chinese].
Chou, S. Y. (1999), Preliminary study of underground sound of debris flows, Master’s thesis, Hydraulic and Ocean Engineering of National Cheng Kung University, Tainan, Taiwan [in Chinese].
Duffy, J. and Mindlin, R. D. (1957), Stress-strain relations and vibrations of a granular medium, J. Appl. Mech., Vol. 24, 585-593.
Friedlander, B. and Porat, B. (1989), Detection of transient signals by the Gabor representation, IEEE Trans, Acoust. Speech, Signal Processing, Vol. 37, No. 2, 169-180.
Friedlander, B. and Zeira, A. (1995), Over-sampled Gabor representation for transient signals, IEEE Trans. Signal Processing, Vol. 43, No. 9, 2088-2094.
Fung, Y. C. (1965), Foundations of solid mechanics, Englewood Cliffs, N.J. Prentice-Hall.
Gabor, D. (1946), Theory of communication, J. Inst. Electr. Eng., Vol. 93, 429-459.
Gassmann, F. (1951a), Über die Elastizität Poröser Medien. Vierteljahrschr. Naturforsch. Ges. Zürich, Vol. 16, 1-23.
Gassmann, F. (1951b), Elastic waves through a packing of spheres, Geophysics, Vol. 16, 673-685.
Geertsma, J. and Smit, D. C. (1961), Some aspects of elastic wave propagation in fluid-saturated porous solids, Geophysics, Vol.26, 169-181.
Hadley, K. C. and LaHusen, R. G. (1991), Deployment of an acoustic flow monitor system and examples of its application at Mount Pinatubo, Philippines, American Geophysical Union 1991 Fall Meeting, abstract, 67.
Hardin, B. O. and Richart, F. E. (1963), Elastic wave velocities in granular soils, J. Soil Mech. and Foundations Div., Proceedings of ASCE, Vol. 89, 33-65.
Hardy, H. R. (1972), Application of acoustic emission techniques to rock mechanics research, Acoustic Emission, ASTM STP 505, American Society for Testing and Materials, 41-83.
Hsiao, T. C., Chang, Y. H., Lee, B. J., Chou, T. Y. and Lien, H. P. (2004), Debris flow observation system, The 23th Conference on Application of Surveying, Taichung City, Taiwan, 803-810 [in Chinese].
Hsu, M. T. (1979), Seismology, Dawn Press [in Chinese].
Hsu, M. T. (1983), Seismology engineering, Dawn Press [in Chinese].
Huang, C. J. (2003), Monitoring the debris flows using geophones, Soil and Water Conservation Bureau, Executive Yuan, SWCB-92-012-12 [in Chinese].
Huang, C. J., Yin, H. Y. and Shieh, C. L. (2003), Experimental study of the underground sound generated by debris flows, The Third Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, Switzerland, 743-753.
Huang, C. J. (2004), Laboratory study of the underground sound generated by debris flows (First Year), Soil and Water Conservation Bureau, Executive Yuan, SWCB-93-130 [in Chinese].
Huang, C. J., Yin, H. Y., Yeh, C. H., Chen, Y. H. and Chen, C. Y. (2004a), Studying ground vibration produced by debris flows using geophones, 2004 International Conference on Slopeland Disaster Mitigation, Taipei, Taiwan, 243-258.
Huang, C. J., Shieh, C. L., Cheng, Y. C., Yin, H. Y., Hsu, H. H. and Tsai, M. H. (2004b), Experimental study on the underground sound generated by the debris flows, Journal of Chinese Institute of Civil and Hydraulic Engineering, Vol. 16, No. 1, 53-63 [in Chinese].
Huang, C. J., Shieh, C. L., and Yin, H. Y. (2004c), Laboratory study of the underground sound generated by debris flows, J. Geophys. Res., 109:1-1(F01008, doi:10.1029/2003JF000048).
Huang, C. J., Yeh, C. H., Yin, H. Y. and Wang, C. L. (2005), Monitoring the underground sound of debris flows using geophones, Journal of Chinese Soil and Water Conservation, 36(1), 39-53 [in Chinese].
Hungre, O. (2005), Classification and terminology, Edited by Matthias Jacob and Oldrich Hungr, Debris-flow Hazards and Related Phenomena.
Hürlimann, M., Rickenmann, D. and Graf C. (2003), “Field and monitoring data of debris-flow events in the Swiss Alps, Can. Geotech. J., 40, 161-175.
Ishikawa, Y., and Ishizaki, T., (1995), System for measuring debris flow ground vibrations at Mt. Unzen, Proc. 3rd PWRI-USGS Workshop on Hydrology, Water Resources and Global Climate Change, Technical Memorandum of PWRI, No. 3373, 31-37.
Itakura, Y., Kamei, N., Takahama, J. I. and Nowa, Y. (1997a), Real time estimation of discharge of debris flow by an acoustic sensor, 14th IMEKO World Congress, New Measurements–Challenges and Visions, Tampere, Finland, Vol. XA, 127-131.
Itakura, Y., Koga, Y., Takahama, J. I. and Nowa, Y. (1997b), Acoustic detection sensor for debris flow, The First Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, San Francisco, U.S.A., 747-756.
Itakura, Y., Kitajima, T., Endo, K. and Sawada, T. (2000), A new double-axes accelerometer debris-flow detection system, The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Rotterdam, 319-324.
Iverson, R. M. (1997), The physics of debris flows, Reviews of Geophysics, Vol. 35, 245-296.
Jan C. D. (2000), Introduction to debris flows, Scientific & Technical Publishing Co. Ltd. [in Chinese].
Jan C. D. and Chen C. L. (2005), Debris flows caused by typhoon Herb in Taiwan, Edited by Matthias Jacob and Oldrich Hungr, Debris-flow Hazards and Related Phenomena.
Johnson, A. M. (1984), Debris flows, in Slope Instability, edited by D. Brunsden and D.B. Prior, 257-361, John Wiley, New York.
Lavigne, F., Thouret, J. C., Voight, B., Young, K., LaHusen, R., Marso, J., Suwa, H., Sumaryono, A., Sayudi, D. S. and Dejean, M. (2000), Instrumental lahar monitoring at Merapi Volcano, Central Java, Indonesia, Journal of Volcanology and Geothermal Research, Vol. 100, 457-478,
Lee, B. J. (2002), The establishment and integration of debris flow monitoring and demonstration station (first year), Soil and Water Conservation Bureau, Executive Yuan, SWCB-91-78 [in Chinese].
Lee, B. J. (2003a), On-site debris-flow data collection (first year), Soil and Water Conservation Bureau, Executive Yuan, SWCB-92-109 [in Chinese].
Lee, B. J. (2003b), Hwua-Shan debris flow monitoring and demonstration station (first year), Soil and Water Conservation Bureau, Executive Yuan, SWCB-92-158 [in Chinese].
Lee, B. J. (2004), On-site debris-flow data collection and monitoring station maintenance (first year), Soil and Water Conservation Bureau, Executive Yuan, SWCB-93-118 [in Chinese].
Liao, R. S. (2000), Rock mechanics and earthquake, Scientific & Technical Publishing Co. Ltd. [in Chinese].
Lien, H. P. (2001), Debris flow monitoring station-assessment, integration and plan of the system, Soil and Water Conservation Bureau, Executive Yuan [in Chinese].
Lien, H. P., Lee, B. J., Chou, T. Y. and Chang, Y. H. (2002), Study on debris flow warning system- debris flow observation and demonstration station, Countermeasures on Debris-flow Disaster Mitigation, 81-91 [in Chinese].
Lien, H. P. (2003), The establishment and prospect of debris flow observation system in Taiwan, Journal of Chinese Geology Society, Vol. 7(1), 5-6 [in Chinese].
Lin, M. L., Hung, J. J., Yu, F. C., Chuang, M. H. and Hong, F. Y. (1998), Evaluation on the disaster and recover of debris flows in Chushuei Creek of Shenmu area, National Science and Technology Program for Hazards Mitigation [in Chinese].
Lin, M. L., Chuang, M. H., Hung, F. E. and Chang, B. H. (1999), The establishment and analysis of the natural environment database in Chenyoulan watershed, National Science and Technology Program for Hazards Mitigation 1999 Annual Report [in Chinese].
Liu, K. F. and Lee, H. C. (1999), Preliminary study of geophone, Proceedings of the 2nd debris flow conference, Hualien City, Taiwan, 84-93 [in Chinese]
Liu, K. F. and Chen, S. C., (2003), Integrated debris-flow monitoring system and virtual center, The Third Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment,” Davos, Switzerland, 767-774.
Liu, K. F. and Lee, H. C. (2000), Application of geophone, Proceedings of the 2nd Cross-strait Conference on Slopeland Disasters and Environmental Protection, Taichung City, Taiwan, 161-169 [in Chinese].
Liu, Y. H. (2001), The study of spatial characteristics on debris flow in Chenyulan creek watershed, Master’s thesis, Geography of National Taiwan University, Taipei, Taiwan [in Chinese].
Love, A. E. H. (1944), A treatise on the mathematical theory of elasticity (4th ed.), Dover, New York, N. Y., 643.
Marcial S. S., Melosantos, A. A., Hadley, K. C., LaHusen, R. G. and Marso, J. N. (1993), Instrumental lahar monitoring of Mt. Pinatubo, In: Newhall, C.G. and Punongbayan, R.S. (Eds.), Fire and Mud: Eruptions and Lahars of Mt. Pinatubo, Philippines, University of Washington Press, 1015-1022.
Mindlin, R. D. (1949), Compliance of elastic bodies in contact, J. Appl. Mech. Trans., ASME, 71, 259-268.
Miller, G. F. and Pursey, H. (1955), On the partition of energy between elastic waves in a semi-infinite solid, Proceedings, Royal Society, London, Series A, Vol. 233, 55-59.
Okuda, S., Okunishi, K. and Suwa, H. (1980), Observation of debris flow at Kamikamihori Valley of Mt. Yakedade, Excursion Guide-book of the 3rd Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, 127-130.
Shearer, P. M. (1999), Introduction to Seismology, Cambridge University Press.
Shieh, C. L. and Chen, L. Z. (1999), The present and future of debris flow warning system, Proceedings of the 2nd debris flow conference, Hualien City, Taiwan, 84-93 [in Chinese].
Shieh, C. L. (2001a), Study and assessment on debris flow warning separation and occurrence criteria, Soil and Water Conservation Bureau, Executive Yuan, [in Chinese].
Shieh, C. L. (2001b), Preliminary study on the disaster baseline of debris flow caused by Typhoon Toraji, Conference on Debris-Flow Disaster Mitigation Strategy, Engineering & Technology Promotion Center, National Science Council [in Chinese].
Soil and Water Conservation Bureau (1992), Handbook of Soil and Water Conservation. Soil and Water Conservation Bureau, Executive Yuan [in Chinese].
Suwa, H., Yamakoshi, T. and Sato, K. (2000), Relationship between debris-flow discharge and ground vibration, The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Rotterdam, 311-318.
Suwa, H., Akamatsu, J. and Nagai, Y. (2003), Energy radiation by elastic waves from debris flows, The Third Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, Switzerland, 895-904.
Takahashi, T. (1991), Debris flow, International Association for Hydraulic Research (IAHR) Monograph, Balkema, Rotterdam.
Tsai, L. T. (2000), Experimental investigation of geophone characteristics for debris flows, Master’s thesis, Hydraulic and Ocean Engineering of National Cheng Kung University, Tainan, Taiwan.
Tungol, N. M. and Regalado, M. T. (1997), Rainfall, acoustic flow monitor records and observed lahars of the Sacobia River in 1992, In: Newhall, C. G. and Punongbayan, R. S. (Eds.), Fire and Mud: Eruptions and Lahars of Mt. Pinatubo, Philippines, University of Washington Press, 1023-1032.
Udias, A. (1999), Principles of seismology, Cambridge University Press.
White, J. E. (1983), Underground sound, Elsevier Science Publishers B. V..
White, J. E. and Sengbush, R. L. (1953), Velocity measurements in near-surface formations, Geophysics, 18, 54-69.
Woods, R. D. (1968), Screening of surface waves in soils, J. Soil Mech. and Foundations Div., Proceedings of ASCE, Vol. 94, 951-979.
Wu, J. S., Kang Z. C., Tian, L. C. and Zhang, S. C. (1990), Observation and investigation of debris flows at Jiangjia Gully in Yunnan Province, Dongchuan debris flow observation station, Chinese Academy of Sciences, Science Press, Beijing, [in Chinese].
Yin, H. Y., Huang, C. J., Lien H. P., Lee B. J., Chou, T. Y. and Wang, C. L. (2006, accepted), Development and application of automated debris-flow monitor system in Taiwan, to be published in the Journal of Chinese Soil and Water Conservation, 37(1), [in Chinese].