簡易檢索 / 詳目顯示

研究生: 許立元
Hsu, Li-Yuan
論文名稱: 高發熱機械於開放式廠房內之三維自然對流特性的預測
Prediction of Natural Convection Heat Transfer Characteristics for High Heat-Generating Machinery in Open Plant
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 135
中文關鍵詞: 逆向計算流體力學計算流體力學逆向方法自然對流廠房通風隔板
外文關鍵詞: Inverse CFD, CFD, Inverse method, Natural convection, Plant ventilation, Partition
相關次數: 點閱:50下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用三維逆向計算流體力學方法結合最小平方法及實驗數據來預測廠房內之熱傳率以及自然對流之熱傳特性,並選定適用於廠房之流動模型以及提出修正之經驗公式,最後探討隔板配置對於廠房內溫度場、速度場及熱對流係數之影響。結果顯示,在本文所有使用的流動模型中,零方程式模型所預測之熱對流係數最為接近現有經驗公式所求得之結果,且溫度均方根誤差也足夠小,因此零方程式模型為最適用於廠房的模型。此外,當隔板高度增加時會對隔板表面溫度產生影響,並提升加熱塊之熱對流係數,最大提升幅度達40%,然而隔板增高會導致隔板下方產生迴流區以及熱空氣聚集。而隔板間距的增加會降低隔板及空氣溫度,最大降溫幅度分別為15 K及3 K,同時提升加熱塊之熱對流係數,最大提升幅度達45%,且有助於避免隔板下方產生迴流區以及熱空氣堆積。因此本文建議廠房之隔板應採用低高度配合大間距的設置,以達到較佳的通風效果,同時提升隔板下方工作區的舒適度。

    In this study, the inverse 3D computational fluid dynamics (CFD) combined with the least squares method (LSM) and experimental data to predict the heat transfer rate and the natural convection heat transfer characteristics in open plant. Moreover, the most suitable flow model is determined, and the revised correlation is proposed. Then, the effects of the configurations of partitions on the temperature distribution, velocity field and heat convection coefficients are investigated in the plant. The results indicate that the heat convection coefficients estimated by zero-equation are closer to the results obtained by the existing correlation and the root mean square error (RMSE) is small enough. Therefore, zero-equation is the most suitable model for this study. In addition, increasing the height of the partitions influences the partition temperature and enhances the heat convection coefficient up to 40%. However, it causes the circulation zone and the concentration of hot air under the partitions. Nevertheless, increasing the spacing between the partitions reduces the temperature of both the partitions and the air. It also enhances the heat convection coefficient up to 45%. Additionally, increasing the spacing prevents the circulation zone and the concentration of hot air under the partitions. It is proposed that the partitions in the plant should be set at a low height with a large spacing to achieve a better ventilation performance and the comfort of the working area.

    摘要I Extend abstractII 誌謝VIII 目錄IX 表目錄XIII 圖目錄XVIII 符號說明XX 第一章 緒論1 1-1 研究背景1 1-2 文獻回顧3 1-3 研究目的9 1-4 本文架構10 第二章 逆向計算流體力學13 2-1 計算流體力學簡介13 2-2 基本假設13 2-3 數值模擬方法14 2-4 統御方程式16 2-5 流動模型18 2-5-1 零方程式模型19 2-5-2 標準k-ε模型20 2-5-3 重整化群k-ε模型22 2-5-4 剪切應力傳輸k-ω模型24 2-6 逆向方法簡介28 2-6-1 最小平方法29 2-6-2 均方根誤差31 第三章 實驗方法32 3-1 實驗簡介32 3-2 實驗設備35 3-2-1 開放空腔35 3-2-2 隔板35 3-2-3 加熱系統36 3-2-4 溫度擷取系統37 3-3 實驗步驟39 3-4 實驗變因43 第四章 數值分析及模擬45 4-1 簡介45 4-2 三維模型建立46 4-3 網格47 4-3-1 網格品質48 4-3-2 網格獨立性分析50 4-4 求解方法54 4-4-1 邊界條件55 第五章 結果與討論58 5-1 簡介58 5-2 流動模型選定59 5-3 修正經驗公式62 5-4 隔板高度對於溫度之影響65 5-5 隔板高度對於熱對流係數之影響70 5-6 隔板高度對於流場之影響75 5-7 隔板間距對於溫度之影響76 5-8 隔板間距對於熱對流係數之影響81 5-9 隔板間距對於流場之影響86 第六章 結論與建議96 6-1 結論96 6-2 未來展望97 第七章 參考文獻99 附錄104

    [1] 陳俊宇, C型工具機之溫升及熱變形量測與切削補償技術. 2019, 國立中正大學.
    [2] 黃榮芳, 林楷玲, 和 許清閔, 工業通風-原理與實務:通風系統設計與改良方法. 2020.
    [3] Rincón-Casado, A., Sánchez de la Flor, F.J., Chacón Vera, E., and Sánchez Ramos, J., "New natural convection heat transfer correlations in enclosures for building performance simulation." Engineering Applications of Computational Fluid Mechanics, vol. 11(1), 2017, p. 340-356.
    [4] Awbi, H.B. and Hatton, A., "Natural convection from heated room surfaces." Energy and buildings, vol. 30(3), 1999, p. 233-244.
    [5] Shati, A.K.A., Blakey, S.G., and Beck, S.B.M., "An empirical solution to turbulent natural convection and radiation heat transfer in square and rectangular enclosures." Applied Thermal Engineering, vol. 51(1-2), 2013, p. 364-370.
    [6] Tian, Y.S. and Karayiannis, T., "Low turbulence natural convection in an air filled square cavity: part I: the thermal and fluid flow fields." International Journal of Heat and Mass Transfer, vol. 43(6), 2000, p. 849-866.
    [7] Markatos, N.C. and Pericleous, K., "Laminar and turbulent natural convection in an enclosed cavity." International journal of heat and mass transfer, vol. 27(5), 1984, p. 755-772.
    [8] Yücel, N., "Natural convection in rectangular enclosures with partial heating and cooling." Wärme-und Stoffübertragung, vol. 29(8), 1994, p. 471-477.
    [9] Ma, J. and Xu, F., "Unsteady natural convection and heat transfer in a differentially heated cavity with a fin for high Rayleigh numbers." Applied Thermal Engineering, vol. 99, 2016, p. 625-634.
    [10] Shi, X. and Khodadadi, J., "Laminar natural convection heat transfer in a differentially heated square cavity due to a thin fin on the hot wall." J. Heat Transfer, vol. 125(4), 2003, p. 624-634.
    [11] Nansteel, M. and Greif, R., "Natural convection in undivided and partially divided rectangular enclosures." ASME Journal of Heat and Mass Transfer, vol. 103(4), 1981, p. 623-629.
    [12] Lin, N.N. and Bejan, A., "Natural convection in a partially divided enclosure." International journal of heat and mass transfer, vol. 26(12), 1983, p. 1867-1878.
    [13] Bajorek, S. and Lloyd, J., "Experimental investigation of natural convection in partitioned enclosures." ASME Journal of Heat and Mass Transfer, vol. 104(3), 1982, p. 527-532.
    [14] Zimmerman, E. and Acharya, S., "Free convection heat transfer in a partially divided vertical enclosure with conducting end walls." International journal of heat and mass transfer, vol. 30(2), 1987, p. 319-331.
    [15] Nag, A., Sarkar, A., and Sastri, V., "Natural convection in a differentially heated square cavity with a horizontal partition plate on the hot wall." Computer methods in applied mechanics and engineering, vol. 110(1-2), 1993, p. 143-156.
    [16] Kumar, R., Sleiti, A., and Kapat, J., "Unsteady Laminar Buoyant Flow Through Rectangular Vents in Large Enclosures." Journal of Thermophysics and Heat Transfer, vol. 20(2), 2006, p. 276-284.
    [17] Mishra, A.A., Hasan, N., Sanghi, S., and Kumar, R., "Two-dimensional buoyancy driven thermal mixing in a horizontally partitioned adiabatic enclosure." Physics of Fluids, vol. 20(6), 2008.
    [18] Hernández, R.H., "Natural convection in thermal plumes emerging from a single heat source." International Journal of Thermal Sciences, vol. 98, 2015, p. 81-89.
    [19] Paroncini, M. and Corvaro, F., "Natural convection in a square enclosure with a hot source." International Journal of Thermal Sciences, vol. 48(9), 2009, p. 1683-1695.
    [20] Biswas, N., Mahapatra, P.S., Manna, N.K., and Roy, P.C., "Influence of Heater Aspect Ratio on Natural Convection in a Rectangular Enclosure." Heat Transfer Engineering, vol. 37(2), 2015, p. 125-139.
    [21] Kalendar, A. and Oosthuizen, P.H., "A numerical and experimental study of natural convective heat transfer from an inclined isothermal square cylinder with an exposed top surface." Heat and Mass Transfer, vol. 49(5), 2013, p. 601-616.
    [22] Zhan, N., Ding, L., Chai, Y., Wu, J., and Xu, Y., "Experimental study on natural convective heat transfer in a closed cavity." Thermal Science and Engineering Progress, vol. 9, 2019, p. 132-141.
    [23] Sefcik, D., Webb, B., and Heaton, H., "Natural convection in vertically vented enclosures." ASME Journal of Heat and Mass Transfer, vol. 113(4), 1991, p. 912-918.
    [24] Sefcik, D., Webb, B., and Heaton, H., "Analysis of natural convection in vertically-vented enclosures." International journal of heat and mass transfer, vol. 34(12), 1991, p. 3037-3046.
    [25] Dubovsky, V., Ziskind, G., Druckman, S., Moshka, E., Weiss, Y., and Letan, R., "Natural convection inside ventilated enclosure heated by downward-facing plate: experiments and numerical simulations." International Journal of Heat and Mass Transfer, vol. 44(16), 2001, p. 3155-3168.
    [26] Ziskind, G., Dubovsky, V., and Letan, R., "Ventilation by natural convection of a one-story building." Energy and Buildings, vol. 34(1), 2002, p. 91-101.
    [27] Drori, U. and Ziskind, G., "Induced ventilation of a one-story real-size building." Energy and Buildings, vol. 36(9), 2004, p. 881-890.
    [28] Myrum, T., "Natural convection from a heat source in a top-vented enclosure." ASME Journal of Heat and Mass Transfer, vol. 112(3), 1990, p. 632-639.
    [29] Yu, E. and Joshi, Y., "A numerical study of three-dimensional laminar natural convection in a vented enclosure." International journal of heat and fluid flow, vol. 18(6), 1997, p. 600-612.
    [30] Koca, A., "Numerical analysis of conjugate heat transfer in a partially open square cavity with a vertical heat source." International Communications in Heat and Mass Transfer, vol. 35(10), 2008, p. 1385-1395.
    [31] Fontana, É., Capeletto, C.A., da Silva, A., and Mariani, V.C., "Three-dimensional analysis of natural convection in a partially-open cavity with internal heat source." International Journal of Heat and Mass Transfer, vol. 61, 2013, p. 525-542.
    [32] Harish, R. and Venkatasubbaiah, K., "Numerical simulation of turbulent plume spread in ceiling vented enclosure." European Journal of Mechanics - B/Fluids, vol. 42, 2013, p. 142-158.
    [33] Harish, R. and Venkatasubbaiah, K., "Non-Boussinesq approach for turbulent buoyant flows in enclosure with horizontal vent and forced inlet port." Applied Mathematical Modelling, vol. 40(2), 2016, p. 927-941.
    [34] Harish, R., "Buoyancy driven turbulent plume induced by protruding heat source in vented enclosure." International Journal of Mechanical Sciences, vol. 148, 2018, p. 209-222.
    [35] Walker, C., Tan, G., and Glicksman, L., "Reduced-scale building model and numerical investigations to buoyancy-driven natural ventilation." Energy and Buildings, vol. 43(9), 2011, p. 2404-2413.
    [36] Wang, Y., Meng, X., Yang, X., and Liu, J., "Influence of convection and radiation on the thermal environment in an industrial building with buoyancy-driven natural ventilation." Energy and Buildings, vol. 75, 2014, p. 394-401.
    [37] Pu, J., Yuan, Y., Jiang, F., Zheng, K., and Zhao, K., "Buoyancy-driven natural ventilation characteristics of thermal corridors in industrial buildings." Journal of Building Engineering, vol. 50, 2022.
    [38] Wang, Y., Gao, J., Xing, X., Liu, Y., and Meng, X., "Measurement and evaluation of indoor thermal environment in a naturally ventilated industrial building with high temperature heat sources." Building and Environment, vol. 96, 2016, p. 35-45.
    [39] Wei, G., Chen, B., Lai, D., and Chen, Q., "An improved displacement ventilation system for a machining plant." Atmospheric Environment, vol. 228, 2020.
    [40] Dou, X., Xie, D., Wang, Z., Xiao, P., and Wang, H., "Improved buoyancy-driver hybrid ventilation system for multiple-heat-source industrial buildings." Case Studies in Thermal Engineering, vol. 26, 2021.
    [41] Chen, M.L., Chen, C.J., Yeh, W.Y., Huang, J.W., and Mao, I.F., "Heat stress evaluation and worker fatigue in a steel plant." AIHA J (Fairfax, Va), vol. 64(3), 2003, p. 352-359.
    [42] Kjellstrom, T., Holmer, I., and Lemke, B., "Workplace heat stress, health and productivity - an increasing challenge for low and middle-income countries during climate change." Glob Health Action, vol. 2, 2009.
    [43] Kjellstrom, T. and Crowe, J., "Climate change, workplace heat exposure, and occupational health and productivity in Central America." Int J Occup Environ Health, vol. 17(3), 2011, p. 270-281.
    [44] Prandtl, L., "Bericht über Untersuchungen zur ausgebildeten Turbulenz." ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 5(2), 1925, p. 136-139.
    [45] Launder, B.E. and Spalding, D.B., The numerical computation of turbulent flows, in Numerical prediction of flow, heat transfer, turbulence and combustion. 1983, Elsevier. p. 96-116.
    [46] Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., and Speziale, C.G., "Development of turbulence models for shear flows by a double expansion technique." Physics of Fluids A: Fluid Dynamics, vol. 4(7), 1992, p. 1510-1520.
    [47] Wilcox, D.C., Turbulence modeling for CFD. Vol. 2. 1998: DCW industries La Canada, CA.
    [48] Menter, F.R., "Two-equation eddy-viscosity turbulence models for engineering applications." AIAA Journal, vol. 32(8), 1994, p. 1598-1605.
    [49] Chen, H.-T., Zhuang, X.-W., Rashidi, S., and Yan, W.-M., "Temperature control in warehouse with internal and external heat rejections." International Journal of Thermal Sciences, vol. 194, 2023.
    [50] Chen, H.-T., Chang, C.-W., Rashidi, S., Čespiva, J., and Yan, W.-M., "Natural convection heat transfer in isosceles prismatic roof with perforated partition and phase change material." Thermal Science and Engineering Progress, vol. 48, 2024.
    [51] Patankar, S., Numerical heat transfer and fluid flow. 2018: CRC press.
    [52] Chen, H.-T., Hsu, M.-H., Huang, Y.-C., and Chang, K.-H., "Experimental and numerical study of inverse natural convection-conduction heat transfer in a cavity with a fin." Numerical Heat Transfer, Part A: Applications, vol. 84(6), 2023, p. 641-658.
    [53] Chen, H.-T., Hsu, M.-H., Yang, K.-C., Chang, K.-H., and Liu, K.-C., "Study of inverse natural convection-conduction heat transfer for in-line tube heat exchanger in a hot box with experimental data." Journal of the Taiwan Institute of Chemical Engineers, vol. 141, 2022.
    [54] Rohsenow, W.M., Hartnett, J.P., and Cho, Y.I., Handbook of heat transfer. Vol. 3. 1998: Mcgraw-hill New York.
    [55] Arpaci, V.S., Kao, S.-H., and Selamet, A., Introduction to heat transfer. 1999.
    [56] Panitz, T. and Wasan, D.T., "Flow attachment to solid surfaces: The Coanda effect." AIChE Journal, vol. 18(1), 2004, p. 51-57.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE