簡易檢索 / 詳目顯示

研究生: 郭翔維
Kuo, Hsiang-Wei
論文名稱: 氮化鎵摻雜錳應用於蕭基光偵測器及太陽能電池之研究
Investigation of Mn-doped GaN based Schottky Photodetectors and Solar Cells
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 氮化鎵摻雜錳蕭基光偵測器太陽能電池
外文關鍵詞: Mn-doped GaN, Schottky Photodetecors, Solar Cells
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為對於錳摻雜於氮化鎵材料光電特性與元件應用之研究。對其光電特性的探討我們進行穿透光譜、霍爾效應之量測。而應用的元件包括:吸收層為氮化鎵摻雜錳的蕭基光偵測器、主動層為GaN:Mn/InGaN 多重量子井結構的太陽能電池、具有Up-Convertion 機制之轉換層的GaN/InGaN多重量子井結構太陽能電池。
    由穿透率的量測結果可看出,錳摻雜於氮化鎵的材料會在禁止能帶間形成雜質能帶,所以此材料除了會吸收能量大於能隙的光,還會吸收能量大於雜質能帶與導(價)電帶能量差的光。將此特性應用於蕭基光偵測器上發現,與傳統氮化鎵材料的蕭基光偵測器相比,其光響應頻譜有明顯的二階式響應。
    由於錳摻雜於氮化鎵材料的光偵測器具有二階響應的性質,進而設計了兩種結構的太陽能電池:第一種為GaN:Mn/InGaN 多重量子井結構的太陽能電池,預期能藉由雜質能帶的吸收而產生多餘的光電流;另一種結構為具有Up-Convertion 機制之光轉換層的GaN/InGaN多重量子井結構太陽能電池,預期能藉由此Up-Convertion 機制更有效利用太陽光頻譜產生多餘的光電流。在本論文中將會介紹此一具有Up-Convertion 機制之光轉換層之結構與工作原理,其實驗結果將在本文中作詳細的討論。

    The optical and electrical properties of Mn-doped epitaxial GaN and the application of devices were studied. Transmittance spectrums indicate that a Mn-related impurity band was formed in the bandgap of GaN. According to the transmittance spectrums, Mn-doped GaN was applied to the absorption layer of schottky barrier detector. Compared with Mn-free GaN-based schottky barrier detector, the responsivity spectrum of Mn-doped GaN-based schottky barrier detector had different performance. The impurity band of Mn-doped GaN induced that Mn-doped GaN-based schottky barrier detector had two different wavelength region response. Therefore, Mn-doped GaN-based schottky barrier detector exhibits two-step-responsivity characteristics.
    As a result of two-step-responsivity characteristics, we fabricated GaN:Mn/InGaN multiple-quantum-well solar cells. Expect that the impurity band of Mn-doped GaN could contribute more photocurrent by sunlight. Another structure that is a luminance up-converter was designed. According to the up-convertion mechanism, we applied the luminance up-converter to GaN/InGaN multiple-quantum-well solar cells which could absorb sunlight more effectively in theory. The experiment result and the theoretically mechanism were studied in this thesis.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 簡介 1 1.1 氮化鎵材料摻雜錳背景介紹 1 1.2 氮化鎵系列光偵測器簡介 2 1.3 氮化銦鎵系列太陽能電池簡介 3 1.4 研究動機與論文架構 6 參考文獻 8 第二章 理論背景 11 2.1 金屬-半導體之蕭基光偵測器原理[1][2][3] 11 2.1.1 金屬-半導體之蕭基能障理論 11 2.1.2 金屬-半導體之蕭基光偵測器工作原理[4] 17 2.2 光偵測器之量子效率(Quantum efficiency)與吸收係數(Aborption coefficient)[4][5] 19 2.3 光偵測器之光響應度(Responsivity) [4][5] 21 2.4 太陽能電池原理[4] 22 2.4.1 太陽能電池之光電特性[4][7] 22 2.5 太陽能效率相關參數[7] 26 2.5.1 短路電流[4][7] 26 2.5.2 開路電壓[4][7] 27 2.5.3 最大輸出功率、最大輸出電流、最大輸出電壓[4][7] 27 2.5.4 填充因子(Fill Factor,FF)[4][7] 28 2.5.5 功率轉換效率(Power Convertion efficiency, )[4][7] 29 2.5.6 串聯電阻[7][8] 29 2.5.7 外部量子效率(External Quantum Efficiency , EQE)[7] 30 2.6 氮化鎵摻雜錳理論背景[5] 31 參考文獻 34 第三章 元件結構與製程 35 3.1 金屬-半導體蕭基光偵測器之結構與製程 35 3.1.1 金屬-半導體蕭基光偵測器之結構 35 3.1.2 金屬-半導體蕭基光偵測器之製程步驟 37 3.2 主動層為GaN:Mn/InGaN 多重量子井太陽能電池之結構與製程步驟 40 3.2.1 主動層為GaN:Mn/InGaN 多重量子井太陽能電池之結構 40 3.2.2 主動層為GaN/InGaN 多重量子井太陽能電池之製程步驟 42 3.3 具有轉換層之InGaN/GaN 多重量子井太陽能電池之結構與製程步驟 43 3.3.1 具有轉換層之GaN:Mn/InGaN 多重量子井太陽能電池之結構 43 3.3.2 具有轉換層之GaN:Mn/InGaN 多重量子井太陽能電池之製程步驟 47 3.4 量測與製程機台介紹 47 第四章 量測結果與討論 50 4.1 氮化鎵摻雜錳之光電特性 50 4.1.1 穿透率量測 50 4.1.2 霍爾量測 52 4.2 金屬-半導體蕭基光偵測器量測結果與討論 52 4.2.1 暗電流與光電流比較 52 4.2.2 光響應值之比較 56 4.2.3 蕭基能障之量測 64 4.3 主動層為GaN:Mn/InGaN 多重量子井太陽能電池之量測結果與討論 73 4.3.1 太陽能電池光電轉換特性分析 74 4.3.2 光響應量測結果分析 76 4.4 具有轉換層之InGaN/GaN 多重量子井太陽能電池量測結果與討論 79 4.4.1 Up-Convertion 原理簡介 79 4.4.2 Up-Converter 之光激螢光結果分析 81 4.4.3 太陽能電池光電轉換特性分析 83 4.4.4 光響應量測結果分析 88 參考文獻 92 第五章 結論與未來展望 93

    第一章
    [1] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, and M. J. Reed, “Room temperature ferromagnetic properties of (Ga, Mn)N”, Appl. Phys. Lett. vol. 79, pp. 3473, (2001).
    [2] F. E. Arkun, M. J. Reed, E. A. Berkman, and N. A. El-Masry, “Dependence of ferromagnetic properties on carrier transfer at GaMnN/GaN:Mg interface”, Appl. Phys. Lett. vol. 85, pp. 3809, (2004).
    [3] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. 80, pp. 1731, (2002).
    [4] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett. vol. 81, pp. 5159, (2002).
    [5] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B. vol. 308, pp. 30, (2001).
    [6] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett. vol. 91, pp. 242502, (2007).
    [7] Antonio Luque and Antonio Martı´, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. Vol. 78, pp. 26, (1997).
    [8] L.Cuadra, A. Martı’, A.Luque, “Present status of intermediate band solar cell research”, Thin Solid Films, 451-452, 593-599, (2004).
    [9] A.Martı´, C.Tablero, E.Antolı´n, A.Luque, R.P.Campion, S.V.Novikov, C.T.Foxon, “Potential of Mn doped In1-XGaXN for implementing intermediate band solar cells”, Solar Energy Materials & Solar Cells, 93, (2009), 641-644.
    [10] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame,and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett. Vol. 60, pp. 2917, (1992).
    [11] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–n junction photodetectors for solar ultraviolet applications” , Semicond. Sci. Technol. vol. 13, pp. 1042-1046, (1998).
    [12] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett. vol. 75, pp. 247-249, (1999).
    [13] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M. Razeghi, “High quality visible-blind algan p–i–n photodiodes”, Appl. Phys. Lett. vol. 74, pp. 1171-1173, (1999).
    [14] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett. vol. 70, pp. 2277-2279, Apr. (1997).
    [15] Z. C. Huang, J. C. Chen, and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J. Cryst. Growth vol. 170, pp. 362-362, (1997).
    [16] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J.K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts”, IEEE Photon. Technol. Lett. vol. 13, pp. 848-850, (2001).
    [17] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High speed, low noise metal-semiconductor-metal ultraviolet photodetectors based on GaN”, Appl. Phys. Lett. vol. 74, pp. 762-764, (1999).
    [18] 施敏, 半導體元件物理與製作技術, 國立交通大學出版社, 2002.
    [19] J. F. Muth, J. H. Lee, I. K. Shmagin, and R. M. Kobas, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Lett. 71 (18), 3 November 1997.
    [20] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager Ⅲ, E.E. Haller, Hai Lu, and William J. Schaff, “Fermi-level stabilization in group Ⅲ nitrides”, Phys. Rev. B 71, 161201 (R), 2005.
    [21] T. Trupke and M. A. Green, P. Würfel, JOURNAL OF APPLIED PHYSICS, Vol. 92, 7, (2002).
    [22] A. Shalav, B. S. Richards, and T. Trupke, K. W. Krämer and H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response”, Appl. Phys. Lett., 86, 013505, (2005).
    [23] T. Trupkea, A. Shalav, B.S. Richards, P. Würfel, M.A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight”, Solar Energy Materials & Solar Cells, 90, (2006), 3327-3328.

    第二章
    [1] Dieter K. Schroder, “Semiconductor material and device
    characterization”, A Wiley-Interscience Publication, chap. 3, (1998).
    [2] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition”, WILEY, chap.7.1, (2001)
    [3] D. A. Neamen, “半導體物理與元件(三版)” 麥格羅希爾出版, chap.
    9.1, (2003)
    [4] 施敏, 半導體元件物理與製作技術, 國立交通大學出版社, 2002.
    [5] 劉宇軒, “錳摻雜於氮化鎵系列材料之光電特性研究與元件應用”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
    [6] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition, WILEY”, p. 314, (2001).
    [7] 黃泯舜, “提升氮化銦鎵太陽能電池轉換效率之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
    [8] Dieter K. Schroder, “Semiconductor material and device
    characterization”, A Wiley-Interscience Publication, chap. 4, pp. 195 , (1998).
    [9] 紀國鐘, 蘇炎坤, 光電半導體技術手冊, 台萬電子材料與元件協會出版, 2002.
    [10] N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu, and R. G. Wilson, “ Magnetic and structural properties of Mn-implanted GaN”, Appl. Phys. Lett. 78, p. 3475 (2001).
    [11] P. Boguslawski and J. Bernholc, “ Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N”, Phys. Rev. B 72, 115208, (2005).
    [12] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett. vol. 91, pp. 242502, (2007).
    [13] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. vol. 80, pp. 1731, (2002).
    [14] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett. vol. 81, p. 5159, (2002).
    [15] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B vol. 308, pp. 30, (2001).
    [16] F. E. Arkun, A. M. Mahros, N. A. El-Masry, J. Muth, X. Zhang, J. M. Zavada, and S. M. Bedair, Materials Research Society Symposia Proceedings vol. 955 (Materials Research Society, Pittsburgh, 2006), p.
    0955-I07-02.
    [17] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition, WILEY”, p. 33, (2001).

    第四章
    [1] 李順昌, “三族氮化物之蕭特基接面內部增益研究”, 國立高雄大學電機工程學系碩士班(光電組) , 碩士論文, (2006).
    [2] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Appl. Phys. Vol. 83, pp. 6148 (1998).
    [3] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett. vol. 72, pp. 542 (1998).
    [4] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett. vol. 79,pp. 1417 (2001).

    下載圖示 校內:2016-08-08公開
    校外:2016-08-08公開
    QR CODE