簡易檢索 / 詳目顯示

研究生: 何青峰
Ho, Ching-Hong
論文名稱: ABC堆疊石墨的磁電子性質
Magnetoelectronic Properties of ABC-stacked Graphenes
指導教授: 林明發
Lin, Ming-Fa
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 89
中文關鍵詞: ABC 堆疊石墨菱方石墨藍道能階緊束縛模型
外文關鍵詞: ABC-stacked graphene, rhombohedral graphite, Landau level, tight-binding model
相關次數: 點閱:133下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本工作就石墨系統之具有ABC 堆疊構形者,以緊束縛模型研究其磁電子性質。該模型係基於磁場下的平移對稱性,不做微擾近似。在此對稱性下,哈密頓矩陣的行列維度是取決於磁場下的一個擴大晶胞。所得到的巨大矩陣則以共對角程序來處理,以便計算其本徵值和本徵向量,而給出藍道能階能譜和波函數。該等藍道能階波函數俱由六角形晶胞所含六個次晶格的六個磁緊束縛布洛赫函數所構成。根據波函數的振盪模可定義其有效量子數,用以指標藍道能階。藍道能階能譜反映零磁場下的次能帶特點。ABC 堆疊三層石墨有三群藍道能階,對應於三對零磁場次能帶。其中,較高的二群強烈混合。較低的一群包括一道賦有局域化量子態的藍道能階。這些量子態是局域化在外層中無垂直鄰層原子的次晶格上。在無限多層模型化的菱方石墨中,藍道能階能譜係類似單層石墨中所已知者,但有某些非類似的特點。本研究工作的緊束縛模型呈現了藍道能階的完整特徵,此乃模型能於哈密頓算符中納入全部的最近和次近
    層間電子跳躍作用所致。同樣的哈密頓算符,在某些層間電子跳躍作用的影響下,其在有效質量近似下所表出的矩陣會是無限大的,從而難以精確計算分析。本研究的結果顯示,藍道能階能譜以費米能為準一般是不對稱的;在ABC 堆疊三層石墨中,則有三重藍道能階處於費米能附近,係由某些層間電子跳躍作用造成的細微分裂;在菱方石墨中,層間電子跳躍作用導致三維藍道次能帶,表徵了該系統與單層石墨的非類似點。

    The low-energy magnetoelectronic properties of ABC-stacked trilayer graphenes are investigated by the tight-binding model, based on the magnetic translation symmetry without perturbative approximation. The Hamiltonian matrix under the symmetry has the dimension of a magnetic enlarged cell.
    Co-diagonal procedures are developed to solve the eigenvalues and eigenvectors of such a huge matrix,
    thus giving the energy spectra and the wave functions of the Landau levels. The Landau-level wave functions are each composed of six magnetic tight-binding Bloch functions for the six sublattices with respect to the hexagonal unit cell. Effective quantum numbers are defined according to the oscillation modes of the wave functions, being used to index the Landau levels. The Landau-level energy spectrum reflects the features of the zero-field subbands. ABC-stacked trilayer graphene possesses three groups of Landau levels corresponding to the three pairs of the zero-field subbands. The two higher-lying groups are strongly mixing. Of the lower-lying group, there exists a level having localized states. They are localized, in the outer layers, at the sublattices
    with no vertical neighbors in contiguous layers. In rhombohedral graphite modelled with infinite ABC-stacked layers, the Landau level spectrum is similar to what has been realized in monolayer graphene but has certain dissimilar features. The tight-binding model displays the full characteristics of the Landau levels, as a consequence of including all the nearest and next-nearest interlayer hoppings into the Hamiltonian. In general, the energy spectrum about the Fermi energy is asymmetric. In ABC-stacked trilayer graphene, there are triplet levels in the vicinity of the Fermi energy, split finely by certain interlayer hoppings. In rhombohedral graphite,
    three-dimensional Landau subbands are identified, characterizing the dissimilarities to monolayer graphene. The same Hamiltonian would be intractable within the effective-mass approximation because the Hamiltonian matrix becomes infinite due to certain interlayer hoppings.

    Ch.1 Introduction (p. 1) Reference (p. 6) Ch.2 Theoretical Approach (p. 12) Ch.2.1 Introduction (p. 12) Ch. 2.2 Magnetic Tight-binding Model (p. 21) Reference (p. 31) Ch.3 ABC-stacked Trilayer Graphene (p. 34) Ch.3.1 Zero-field Band Structure (p. 34) Ch.3.2 Landau Level Energy Spectra (p. 37) Ch.3.3 Landau Level Wave Functions (p. 41) Reference (p. 50) Ch.4 Comparison with Effective-mass Approach (p. 51) Ch.4.1 Introduction (p. 51) Ch.4.2 Dependence on Field Strength and Landau Level Index (p. 53) Reference (p. 58) Ch.5 Rhombohedral Graphite (p. 60) Ch.5.1 Zero-field Band Structure (p. 60) Ch.5.2 Landau Level Energy Spectra and Wave Functions: Comparison with Monolayer Graphene (p. 64) Reference (p. 74) Ch.6 Summary (75) Appendix (p.78) A. Commutativity of Magnetic Translation with Hamiltonian (p. 78) B. Magnetic Enlarged Cell and Bloch Theorem (p. 80) C. Co-diagonal Hamiltonian Matrix: ABC-stacked Trilayer Graphene (p. 84) D. Low-energy Subbands of ABC-stacked Trilayer Graphene (p. 86)

    Ch.1
    1. P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622 (1947).
    2. H. Lipson and A. R. Stokes, The structure of graphite, Proc. R. Soc. London, Ser. A 181, 101 (1942).
    3. D. Guerard and A. Herold, Intercalation of lithium into graphite and other carbons, Carbon 13, 337 (1975).
    4. F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solid, Pergamon Press, Oxford (1975).
    5. L. Samuelson, Inder P. Batra and C. Roetti, A comparison of electronic properties of various modifications of graphite, Solid St. Commun. 33, 817 (1980).
    6. J. C. Charlier, X. Gonze and J. P. Michenaud, First-principles study of the stacking effect on the electronic properties of graphite(s), Carbon 32, 289 (1994).
    7. N. J. Luiggi and M. Gomez, Rhombohedral graphite: Comparative study of the electronic properties, J. Mol. Struc. THEOCHEM 897, 118 (2009).
    8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004).
    9. C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108, 19912 (2004).
    10. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009).
    11. D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler and Tapash Chakraborty, Properties of graphene: a theoretical perspective, Adv. Phys. 59, 261 (2010).
    12. S. Latil and L. Henrard, Charge carriers in few-layer graphene films, Phys. Rev. Lett. 97, 036803 (2006).
    13. M. Aoki and H. Amawashi, Dependence of band structures on stacking and field in layered graphene, Solid St. Commun. 142, 123 (2007).
    14. Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature 438, 201 (2005).
    15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438, 197 (2005).
    16. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. K. Geim, Unconventional quantum Hall effect and Berry's phase of 2 pi in bilayer graphene, Nat. Phys. 2, 177 (2006).
    17. R. S. Deacon, K. C. Chuang, R. J. Nicholas, K. S. Novoselov and A. K. Geim, Cyclotron resonance study of the electron and hole velocity in graphene monolayers, Phys. Rev. B 76, 081406 (2007).
    18. Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Hun, P. Kim and H. L. Stormer, Infrared spectroscopy of Landau levels of graphene, Phys. Rev. Lett. 98, 197403 (2007).
    19. E. A. Henriksen, Z. Jiang, L. C. Tung, M. E. Schwartz, M. Takita, Y. J. Wang, P. Kim and H. L. Stormer, Cyclotron resonance in bilayer graphene, Phys. Rev. Lett. 100, 087403 (2008).
    20. J. C. Charlier, J. P. Michenaud, X. Gonze and J. P. Vigneron, Tight-binding model for the electronic properties in simple hexagonal graphite, Phys. Rev. B 44, 13237 (1991).
    21. J. C. Slonczewski and P. R. Weiss, Band structure of graphite, Phys. Rev. 109, 272 (1958).
    22. J. W. McClure, Band structure of graphite and de Haas-van Alphen effect, Phys. Rev. 108, 612 (1957).
    23. J. W. McClure, Electron energy band structure and electronic properties of rhombohedral graphite, Carbon 7, 425 (1969).
    24. D. Tomanek and S. G. Louie, First-principles calculation of highly asymmetric structure in scanning-tunneling-microscopy images of graphite, Phys. Rev. B 37, 8327 (1988).
    25. J. L. Manes, F. Guinea and M. A. H. Vozmediano, Existence and topological stability of Fermi points in multilayered graphene, Phys. Rev. B 75, 155424 (2007).
    26. A. Bostwick, T. Ohta, T. Seyller, K. Horn and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3, 36 (2007).
    27. T. Ohta, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn and E. Rotenberg, Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 98, 206802 (2007).
    28. A. T. NDiaye, S. Bleikamp, P. J. Feibelman and T. Michely, Two-dimensional Ir cluster lattice on a graphene Moire on Ir(111), Phys. Rev. Lett. 97, 215501 (2006).
    29. P. Mallet, F. Varchon, C. Naud, L. Magaud, C. Berger and J. Y. Veuillen, Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy, Phys. Rev. B 76, 041403 (2007).
    30. D. Tomanek, S. G. Louie, H. J. Mamin, D. W. Abraham, R. E. Thomson, E. Ganz and J. Clarke, Theory and observation of highly asymmetric structure in scanning-tunneling-microscopy images of graphite, Phys. Rev. B 35, 7790 (1987).
    31. C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. K. Fang and M. F. Lin, Magnetoelectronic properties of a graphite sheet, Carbon 42, 2975 (2004).
    32. B. Partoens and F. M. Peeters, From graphene to graphite: Electronic structure around the K point, Phys. Rev. B 74, 075404 (2006).
    33. C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang and M. F. Lin, Low-energy electronic properties
    of the AB-stacked few-layer graphite, J. Phys.: Condens. Matter 18, 5849 (2006).
    34. C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang and M. F. Lin, Electronic properties of AA- and ABC-stacked few-layer graphites, J. Phys. Soc. Jpn. 76, 024701 (2007).
    35. N. Nemec and G. Cuniberti, Hofstadter butterflies in bilayer graphene, Phys. Rev. B 75, 201404 (2007).
    36. J. H. Ho, Y. H. Lai, Y. H. Chiu and M. F. Lin, Landau levels in graphene, Physica E 40, 1722 (2008).
    37. Y. H. Chiu, Y. H. Lai, J. H. Ho, D. S. Chuu and M. F. Lin, Electronic structure of a two-dimensional graphene monolayer in a spatially modulated magnetic field: Peierls tight-binding model, Phys. Rev. B 77, 045407 (2008).
    38. Y. H. Lai, J. H. Ho, C. P. Chang and M. F. Lin, Magnetoelectronic properties of bilayer Bernal graphene, Phys. Rev. B 77, 085426 (2008).
    39. Y. H. Ho, Y. H. Chiu, D. H. Lin, C. P. Chang and M. F. Lin, Magneto-optical selection rules in bilayer Bernal graphene, ACS Nano 4, 1465 (2010).
    40. D. P. DiVincenzo and E. J. Mele, Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds, Phys. Rev. B 29, 1685 (1984).
    41. Y. Zheng and T. Ando, Hall conductivity of a two-dimensional graphite system, Phys. Rev. B 65, 245420 (2002).
    42. E. McCann and T. Falko, Landau-level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett. 96, 086805 (2006).
    43. M. Koshino and T. Ando, Magneto-optical properties of multilayer graphene, Phys. Rev. B 77, 115313 (2008).
    44. F. Guinea, A. H. Castro Neto and N. M. R. Peres, Electronic states and Landau levels in graphene stacks, Phys. Rev. B 73, 245426 (2006).
    45. M. Koshino and E. McCann, Trigonal warping and Berry's phase N pi in ABC-stacked multilayer graphene, Phys. Rev. B 80, 165409 (2009).
    46. D. Langbein, The tight-binding and the nearly-free-electron approach to lattice electrons in external magnetic fields, Phys. Rev. 180, 633 (1969).
    47. J. W. McClure, Diamagnetism of graphite, Phys. Rev. 104, 666 (1956).
    48. J. W. McClure, Theory of diamagnetism of graphite, Phys. Rev. 119, 606 (1960).
    49. K. Nakao, Landau level structure and magnetic breakthrough in graphite, J. Phys. Soc. Jpn. 40, 761 (1976).
    50. J. M. Luttinger and W. Kohn, Motion of electrons and holes in perturbed periodic fields, Phys. Rev. 97, 869 (1955).
    51. G. Dresselhaus, Graphite Landau levels in the presence of trigonal warping, Phys. Rev. B 10, 3602 (1974).
    52. R. Saito, G. Dresselhaus and M. S. Dresselhaus, Magnetic energy bands of carbon nanotubes, Phys. Rev. B 50, 14698 (1994).
    53. Y. C. Huang, M. F. Lin and C. P. Chang, Landau levels and magneto-optical properties of graphene ribbons, J. Appl. Phys. 103, 073709 (2008).
    54. J. M. Luttinger, The effect of a magnetic field on electrons in a periodic potential, Phys. Rev. 84, 814 (1951).

    Ch.2
    1. S. Latil and L. Henrard, Charge carriers in few-layer graphene films, Phys. Rev. Lett. 97, 036803 (2006).
    2. M. Aoki and H. Amawashi, Dependence of band structures on stacking and field in layered graphene, Solid St. Commun. 142, 123 (2007).
    3. J. C. Charlier, X. Gonze and J. P. Michenaud, First-principles study of the stacking effect on the electronic properties of graphite(s), Carbon 32, 289 (1994).
    4. N. J. Luiggi and M. Gomez, Rhombohedral graphite: Comparative study of the electronic properties, J. Mol. Struc. THEOCHEM 897, 118 (2009).
    5. J. W. McClure, Electron energy band structure and electronic properties of rhombohedral graphite, Carbon 7, 425 (1969).
    6. L. Samuelson, Inder P. Batra and C. Roetti, A comparison of electronic properties of various modifications of graphite, Solid St. Commun. 33, 817 (1980).
    7. C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang and M. F. Lin, Electronic properties of AA- and ABC-stacked few-layer graphites, J. Phys. Soc. Jpn. 76, 024701 (2007).
    8. J. H. Won, B. R. Wu, and M. F. Lin, Electronic properties of rhombohedral graphite, Comp. Phys. Commun. 182, 77 (2001).
    9. J. C. Charlier, J. P. Michenaud and Ph. Lambin, Tight-binding density of electronic states of pregraphitic carbon, Phys. Rev. B 46, 4540 (1992).
    10. M. Koshino and T. Ando, Orbital diamagnetism in multilayer graphene: Systematic study with the effective mass approximation, Phys. Rev. B 76, 085425 (2007).
    11. M. Nakamura and L. Hirasawa, Electric transport and magnetic properties in multilayer graphene, Phys. Rev. B 77, 045429 (2008).
    12. D. Tomanek and S. G. Louie, First-principles calculation of highly asymmetric structure in scanning-tunneling-microscopy
    images of graphite, Phys. Rev. B 37, 8327 (1988).
    13. J. W. McClure, Theory of diamagnetism of graphite, Phys. Rev. 119, 606 (1960).
    14. K. Nakao, Landau level structure and magnetic breakthrough in graphite, J. Phys. Soc. Jpn. 40, 761 (1976).
    15. E. McCann and T. Falko, Landau-level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett. 96, 086805 (2006).
    16. M. Koshino and E. McCann, Trigonal warping and Berry's phase N pi in ABC-stacked multilayer graphene, Phys. Rev. B 80, 165409 (2009).
    17. F. Guinea, A. H. Castro Neto and N. M. R. Peres, Electronic states and Landau levels in graphene stacks, Phys. Rev. B 73, 245426 (2006).
    18. G. H. Wannier, Dynamics of band electrons in electric and magnetic fields, Rev. Mod. Phys. 34, 645 (1962).
    19. E. Brown, Bloch electrons in a uniform magnetic field, Phys. Rev. 133, A1038 (1964).
    20. J. Zak, Magnetic translation group, Phys. Rev. 134, A1602 (1964).
    21. E. I. Blount, Magnetic splitting of energy bands, Phys. Rev. B 37, 5884 (1988).
    22. J. Zak, Exact symmetry of approximate effective Hamiltonians, Phys. Rev. Lett. 67, 2565 (1991).
    23. V. A. Geyler and I. Y. Popov, Group-theoretical analysis of lattice Hamiltonians with a magnetic field, Phys. Lett. A 201, 359 (1995).
    24. E. Brown, Generalized Wannier functions and effective Hamiltonians, Phys. Rev. 166, 626 (1968) 626.
    25. J. M. Luttinger, The effect of a magnetic field on electrons in a periodic potential, Phys. Rev. 84, 814 (1951).
    26. R. Saito, G. Dresselhaus and M. S. Dresselhaus, Magnetic energy bands of carbon nanotubes, Phys. Rev. B 50, 14698 (1994).
    27. M. Graf and P. Vogl, Electromagnetic fields and dielectric response in empirical tight-binding theory, Phys. Rev. B 51, 4940 (1995).
    28. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009).
    29. J. W. McClure, Diamagnetism of graphite, Phys. Rev. 104, 666 (1956).
    30. C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. K. Fang and M. F. Lin, Magnetoelectronic properties of a graphite sheet, Carbon 42, 2975 (2004).
    31. C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. C. Huang and M. F. Lin, Magnetoelectronic properties of the AB-stacked graphite, Carbon 43, 1424 (2005).
    32. C. L. Lu, C. P. Chang and M. F. Lin, Magneto-electronic properties of the AA- and ABC-stacked graphites, Eur. Phys. J. B 60, 161 (2007).
    33. N. Nemec and G. Cuniberti, Hofstadter butterflies in bilayer graphene, Phys. Rev. B 75, 201404 (2007).

    Ch.3
    1. S. Latil and L. Henrard, Charge carriers in few-layer graphene films, Phys. Rev. Lett. 97, 036803 (2006).
    2. M. Aoki and H. Amawashi, Dependence of band structures on stacking and field in layered graphene, Solid St. Commun. 142, 123 (2007).
    3. C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang and M. F. Lin, Electronic properties of AA- and ABC-stacked few-layer graphites, J. Phys. Soc. Jpn. 76, 024701 (2007).
    4. M. Koshino and E. McCann, Trigonal warping and Berry's phase $Npi$ in ABC-stacked multilayer graphene, Phys. Rev. B 80, 165409 (2009).
    5. E. McCann and T. Falko, Landau-level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett. 96, 086805 (2006).
    6. C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang and M. F. Lin, Low-energy electronic properties
    of the AB-stacked few-layer graphite, J. Phys.: Condens. Matter 18, 5849 (2006).
    7. Y. H. Ho, Y. H. Chiu, D. H. Lin, C. P. Chang and M. F. Lin, Magneto-optical selection rules in bilayer Bernal graphene, ACS Nano 4, 1465 (2010).
    8. J. H. Ho, Y. H. Lai, Y. H. Chiu and M. F. Lin, Landau levels in graphene, Physica E 40, 1722 (2008).
    9. Y. H. Lai, J. H. Ho, C. P. Chang and M. F. Lin, Magnetoelectronic properties of bilayer Bernal graphene, Phys. Rev. B 77, 085426 (2008).

    Ch.4
    1. J. M. Luttinger and W. Kohn, Motion of electrons and holes in perturbed periodic fields, Phys. Rev. 97, 869 (1955).
    2. J. C. Slonczewski and P. R. Weiss, Band structure of graphite, Phys. Rev. 109, 272 (1958).
    3. J. W. McClure, Diamagnetism of graphite, Phys. Rev. 104, 666 (1956).
    4. G. Dresselhaus, Graphite Landau levels in the presence of trigonal warping, Phys. Rev. B 10, 3602 (1974).
    5. J. W. McClure, Theory of diamagnetism of graphite, Phys. Rev. 119, 606 (1960).
    6. K. Nakao, Landau level structure and magnetic breakthrough in graphite, J. Phys. Soc. Jpn. 40, 761 (1976).
    7. E. McCann and T. Falko, Landau-level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett. 96, 086805 (2006).
    8. M. Koshino and E. McCann, Trigonal warping and Berry's phase N pi in ABC-stacked multilayer graphene, Phys. Rev. B 80, 165409 (2009).
    9. W. G. Chambers, Magnetic breakdown: Effective Hamiltonian and de Haas-van Alphen effect, Phys. Rev. 149, 493 (1966).
    10. J. M. Luttinger, The effect of a magnetic field on electrons in a periodic potential, Phys. Rev. 84, 814 (1951).
    11. P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. A 68, 874 (1955).
    12. D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14, 2239 (1976).
    13. H. Min and A. H. MacDonald, Electronic structure of multilayer graphene, Prog. Theor. Phys. Suppl. 176, 227 (2008).
    14. C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang and M. F. Lin, Electronic properties of AA- and ABC-stacked few-layer graphites, J. Phys. Soc. Jpn. 76, 024701 (2007).

    Ch.5
    1. L. Samuelson, Inder P. Batra and C. Roetti, A comparison of electronic properties of various modifications of graphite, Solid St. Commun. 33, 817 (1980).
    2. C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang and M. F. Lin, Electronic properties of AA- and ABC-stacked few-layer graphites, J. Phys. Soc. Jpn. 76, 024701 (2007).
    3. J. H. Won, B. R. Wu, and M. F. Lin, Electronic properties of rhombohedral graphite, Comp. Phys. Commun. 182, 77 (2001).
    4. J. W. McClure, Electron energy band structure and electronic properties of rhombohedral graphite, Carbon 7, 425 (1969).
    5. B. I. Halperin, Possible states for a three-Dimensional electron gas in a strong magnetic field, Jpn. J. Appl. Phys. Suppl. 26, 1913 (1987).
    6. B. A. Bernevig, Theory of the three-dimensional quantum Hall effect in graphite, Phys. Rev. Lett. 99, 146804 (2007).
    7. V. P. Gusynin and S. G. Sharapov, Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. II. Transport properties, Phys. Rev. B 71, 125124 (2005).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE