| 研究生: |
林宜頡 Lin, I-Chieh |
|---|---|
| 論文名稱: |
切屑厚度對銑削穩定性之影響 Effect of Chip Thickness on Milling Stability |
| 指導教授: |
王俊志
Wang, Jiunn-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 切削係數 、銑削穩定性 、製程阻尼 |
| 外文關鍵詞: | Cutting coefficients, Milling stability, Process damping |
| 相關次數: | 點閱:82 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討切屑厚度對切削係數的影響及其與銑削穩定性之關係,同時建立包含再生效應和製程阻尼的穩定圖來預測銑削穩定性。首先利用剪切效應和剪犂效應兩種模式來預測銑削力,並從實驗的平均力求得FCD400 材料在不同平均切削厚度下的切削係數。從切削係數實驗結果中發現,剪切係數會隨著平均切屑厚度下降呈現近似指數拉升的趨勢,切向的犁切係數則隨著平均切屑
厚度增加呈現近似線性上升的關係。接著本文將隨著平均切屑厚度變化的剪切係數考慮到動態銑削模型中,並基於離散概念和辛普森積分法建立每刃週期下的轉移矩陣來預測銑削穩定性,此模式包含高階動態力和高階製程阻尼力的影響。從分析結果發現當切屑厚度變小時,系統穩定性會有降低的趨勢;反之,當切屑厚度變大則系統穩定性提高,此趨勢與實驗結果相符。從分析結果也得知,在低轉速區由於受到製程阻尼影響,極限切深會有拉升的趨勢。但與實驗結果比較後發現,以固定的製程阻尼係數無法準確預測系統在低轉速區的穩定性,並從實驗結果推斷製程阻尼係數也可能會隨著平均切削厚度變小而有變大的趨勢。
This study investigates the effect of chip thickness on milling stability. The experimental results show that the shearing cutting coefficients increase as the average chip thickness decrease. The trend can be approximated as an exponential decay function. Then, a discretization method based on Newton-Cotes integration is proposed to predict milling stability with high-order forces and high-order process damping. In addition, the varying shearing cutting coefficient are also considered into the dynamic milling system model. The predicted lobes indicate that the milling stability decrease with the chip thickness. In other words, the stability will enhance as the chip thickness increase. This analysis results are confirmed by a series of chatter experiments. Through the presented method, it is also shown that the stability will also increase at low spindle speed region because of process damping. However, it demonstrates that the prediction results disagree with the experiments owing to the assumption of the fixed process damping coefficient in the proposed method. From the experimental results, it is inferred that the process damping coefficients may also increase when the average cutting thickness decrease.
Ahmadi, K., & Ismail, F., Stability lobes in milling including process damping and
utilizing multi-frequency and semi-discretization methods. International
Journal of Machine Tools and Manufacture, 54, 46-54, 2016.
Altintas, Y., & Budak, E., Analytical Prediction of Stability Lobes in Milling. CIRP
Annals - Manufacturing Technology, 44(1), 357-362. doi:
http://dx.doi.org/10.1016/S0007-8506(07)62342-7, 1995
Altintas, Y., & Budak, E., Analytical prediction of chatter stability in milling—part I:
general formulation. Journal of Dynamic Systems, Measurement, and Control,
120, 22-30, 1998a.
Altintas, Y., & Budak, E., Analytical prediction of chatter stability in milling—part
II: application of the general formulation to common milling systems. Journal
of Dynamic Systems, Measurement, and Control, 120(1), 31-36, 1998b.
Budak, E., Altintaş, Y., & Armarego, E. J. A., Prediction of Milling Force Coefficients
From Orthogonal Cutting Data. Journal of Manufacturing Science and
Engineering, 118(2), 216-224, 1996.
Ding, Y., Zhu, L., Zhang, X., & Ding, H., A full-discretization method for prediction
of milling stability. International Journal of Machine Tools and Manufacture,
50(5), 502-509, 2010.
Ding, Y., Zhu, L., Zhang, X., & Ding, H., Numerical integration method for
prediction of milling stability. Journal of Manufacturing Science and
Engineering, 133(3), 031005, 2011.
Grossi, N., Sallese, L., Scippa, A., & Campatelli, G., Chatter stability prediction in
milling using speed-varying cutting force coefficients. Procedia CIRP, 14,
170-175, 2014.
Grossi, N., Sallese, L., Scippa, A., & Campatelli, G., Speed-varying cutting force
coefficient identification in milling. Precision Engineering, 42, 321-334, 2015.
Huang, C., & Wang, J. J., Mechanistic modeling of process damping in peripheral
milling. Journal of Manufacturing Science and Engineering, 129(1), 12-20,
2007.
Insperger, T., & Stépán, G., Updated semidiscretization
method for periodic delaydifferential
equations with discrete delay. International Journal for Numerical
Methods in Engineering, 61(1), 117-141, 2004.
Jin, X., & Altintas, Y., Chatter stability model of micro-milling with process damping.
Journal of Manufacturing Science and Engineering, 135(3), 031011, 2013.
74
Koenigsberger, F., & Sabberwal, A., An investigation into the cutting force pulsations
during milling operations. International Journal of Machine Tool Design and
Research, 1(1-2), 15-33, 1961.
Martelloti, M. E., An analysis of the milling process. Trans. ASME 63, 677-700, 1941.
Martelloti, M. E., An analysis of the milling process: part II—down milling. Trans.
ASME 67, 233-251, 1945.
Merdol, S., & Altintas, Y., Multi frequency solution of chatter stability for low
immersion milling. Transactions-American society of Mechanical engineers
Joural of Manufacturing Science and Engineering, 126, 459-466, 2004.
Simth, S., & Tlusty, J., An Overview of Modeling and Simulation of the Milling
Process. Journal of Engineering for Industry, 113(2), 169-175, 1991.
Smith, S., & Tlusty, J., Update on High-Speed Milling Dynamics. Journal of
Engineering for Industry, 112(2), 142-149, 1990.
Tlusty, J., & Ismail, F., Special aspects of chatter in milling. Journal of Vibration,
Acoustics, Stress, and Reliability in Design, 105(1), 24-32, 1983.
Tlusty, J., & MacNeil, P., Dynamics of cutting forces in end milling. Ann. CIRP, 24
(1975), 20-25, 1975.
Wang, J.-J. J., Liang, S. Y., & Book, W. J., Convolution analysis of milling force
pulsation, 1994.
Wang, J.-J. J., & Zheng, C., An analytical force model with shearing and ploughing
mechanisms for end milling. International Journal of Machine Tools and
Manufacture, 42(7), 761-771, 2002.
Wang, J., Uhlmann, E., Oberschmidt, D., Sung, C., & Perfilov, I., Critical depth of
cut and asymptotic spindle speed for chatter in micro milling with process
damping. CIRP Annals-Manufacturing Technology, 65(1), 113-116, 2016.
Zhang, T., Liu, Z., Shi, Z., & Xu, C., Investigation on size effect of specific cutting
energy in mechanical micro-cutting. The International Journal of Advanced
Manufacturing Technology, 1-13, 2017.
Zhang, Z., Li, H., Meng, G., & Liu, C., A novel approach for the prediction of the
milling stability based on the Simpson method. International Journal of
Machine Tools and Manufacture, 99, 43-47, 2015.
Zheng, C., Wang, J.-J. J., & Sung, C., Analytical prediction of the critical depth of
cut and worst spindle speeds for chatter in end milling. Journal of
Manufacturing Science and Engineering, 136(1), 011003. 2014.
王俊志, & 葉作益., 製程阻尼對銑削加工多頻率穩定性之影響. 中國機械工程
學會第三十三屆全國學術研討會論文集, 新竹, 台灣, 2016.