簡易檢索 / 詳目顯示

研究生: 蘇哲煜
Su, Che-Yu
論文名稱: 運用SE-ResNet深度學習方法於端銑刀刀腹磨耗階段之智能化預測與狀態監測
Intelligent Prediction and Condition Monitoring of End Mill Flank Wear by Using SE-ResNet Deep Learning Method
指導教授: 陳響亮
Chen, Shang-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 125
中文關鍵詞: 監督式深度學習刀具磨耗狀態維護開放平台通訊統一架構
外文關鍵詞: Supervised learning, Tool wear, Condition-based maintenance, Open platform communications unified architecture
相關次數: 點閱:107下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製造工廠對於設備製造效率的要求不斷提升,如何有效降低加工機的刀具維護成本以及相關效率提升,已成為最近幾年熱門的研究議題,特別是有關刀具預測與監測智能化之研究。如針對透過機台安裝感測器之訊號,如何判斷刀具切削時之狀態。故本論文以刀具刀腹磨耗階段做為刀具狀態監測之依據,並使用壓縮和激勵殘差神經網路(Squeeze-and-excitation residual networks, SE-ResNet)監督式深度學習模型,進行模型訓練與預測,並將已訓練完成之數據模型導入具開放平台通訊統一架構(Open platform communications unified architecture, OPC UA)網路協定之監測系統,進行同場區多機台監測與預測。
    本論文使用IEEE NUAA_Ideahouse刀具磨耗資料集的感測器數據作為訓練資料,並使用資料集的端銑刀刀腹最大磨耗寬度做為刀腹磨耗階段之分類依據,將其磨耗階段分為初期磨耗、均勻磨耗以及嚴重磨耗。為了符合模型之資料輸入型態,須透過Z分數標準化(Z-score standardization)、滑動視窗(Sliding window)演算方法進行資料數據處理,並以資料融合方式將一維數據合併為二維數據型態。本預測模型以ResNet-18模型為基礎進行預測模型層數與參數調整,透過增加壓縮和激勵網路(Squeeze-and-excitation networks, SENet)與減少模型層數,可以減少模型大小與增加模型層與層間之特徵提取。透過驗證數據測試辨識模型之F1分數,以及針對二種相似模型與以比較,可得到本模型驗證之F1分數準確率為99.04%,最終模型測試之F1分數準確率為98.62%。本論文最後建立端銑刀刀腹磨耗階段監測平台,其具有機台感測數據監測、刀具刀腹磨耗階段監測與機台狀態異常警報監測功能,作為刀具是否需要更換與機台保養之預警。

    In recent years, as manufacturing factories demand higher equipment efficiency, intelligent prediction and monitoring of tool wear have gained attention. This study uses sensors to predict tool wear stages which are based on the maximum tool flank wear width. The IEEE NUAA_Ideahouse tool wear dataset's sensor data is utilized for data preprocessing, model training, and model testing. The study uses Z-score standardization and sliding window for data processing and uses the SE-ResNet model for training. The experimental results show that validation accuracy is 99.04% and test accuracy is 98.62%. Lastly, the research integrates the Open Platform Communications Unified Architecture (OPC UA) for multi-machine monitoring, enabling the system to have machine sensor data monitoring, tool wear stage monitoring, and abnormal machine state alerts. This system facilitates timely tool replacement and maintenance warnings.

    摘要 I 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XVII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 第二章 文獻探討 4 2.1 深度學習技術於工具機狀態監測發展 4 2.2 深度學習技術 10 2.2.1 訊號預處理技術 10 2.2.2 壓縮和激勵網路框架 12 2.2.3 殘差神經網路框架 14 2.2.4 壓縮和激勵殘差神經網路框架 15 2.2.5 預測模型參數與驗證模型準確度方法探討 16 2.3 刀具壽命之定義 26 2.4 IEEE NUAA_Ideahouse刀具磨耗資料集 28 2.4.1 IEEE NUAA_Ideahouse刀具磨耗資料集挖槽銑加工參數 29 2.4.2 IEEE NUAA_Ideahouse刀具磨耗資料集刀具磨耗量測方法 30 2.4.3 IEEE NUAA_Ideahouse刀具磨耗資料集刀具磨耗特徵資料收集 32 2.4.4 IEEE NUAA_Ideahouse 刀具磨耗W8資料集切削方法與參數 35 2.5 應用物聯網技術於監測系統文獻探討 36 第三章 研究方法 39 3.1 系統架構設計 39 3.2 系統網路傳輸架構設計 40 3.3 銑刀刀腹磨耗階段設計 41 3.4 銑刀刀腹磨耗階段之預測模型設計 43 3.4.1 模型模組規劃 43 3.4.2 端銑刀刀腹磨耗階段預測模型建立 44 3.4.3 端銑刀刀腹磨耗階段預測模型訓練流程 52 3.4.4 端銑刀刀腹磨耗階段預測模型參數設計 58 3.4.5 端銑刀刀腹磨耗階段預測模型性能比較 59 3.5 OPC UA資料傳輸模組 63 3.5.1 OPC UA資訊架構 63 3.5.2 OPC UA軟體使用 64 3.6 監測模組設計 65 3.6.1 監測系統應用情境 65 3.6.2 監測平台規劃 66 第四章 系統實作與測試分析 71 4.1 端銑刀刀腹磨耗階段預測之資料集數據前處理分析 71 4.2 端銑刀刀腹磨耗階段預測之預先學習模型測試分析 76 4.2.1 端銑刀刀腹磨耗階段模型訓練結果分析 77 4.2.2 SE-Resnet-10模型與其他模型驗證預測模型性能比較 83 4.2.3 端銑刀刀腹磨耗階段模型對於不同特徵組合驗證預測模型性能比較 85 4.3 端銑刀刀腹磨耗階段監測系統驗證與系統平台實作 87 4.3.1 監測系統驗證—— 模擬多機台端銑刀刀腹磨耗階監測 87 4.3.2 端銑刀刀腹磨耗階段監測系統驗證操作流程 90 4.3.3 資料收集模組資料寫入伺服端驗證流程 91 4.3.4 OPC UA資料傳輸模組伺服端節點建立 93 4.3.5 OPC UA資料傳輸模組讀寫性能測試 94 4.3.6 端銑刀刀腹磨耗階段監測平台使用者介面實作 98 第五章 研究成果 104 5.1 端銑刀刀腹磨耗階段模型測試預測結果分析 104 5.2 SE-Resnet-10模型與其他模型測試預測模型性能比較 106 5.3 相同模型對於不同特徵組合測試預測模型性能比較 109 第六章 結論與未來展望 112 參考文獻 114 附錄 117 A1. 第1次切削原始數據 117 A2. 第26次切削原始數據 119 A3. 第1次切削數據經過Z分數標準化數據 121 A4. 第26次切削數據經過Z分數標準化數據 123 A5. 系統驗證所使用之設備規格表 125

    [1] Bhattacharyya, P., Sengupta, D., & Mukhopadhyay, S, “Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques,” Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 2665-2683, 2007.
    [2] 許志豪,應用類神經網路與多重感測器之微銑削刀具狀態偵測系統開發,國立中興大學機械工程研究所碩士論文,2015年。
    [3] Duan, J., Zhang, X., & Shi, T., “A hybrid attention-based paralleled deep learning model for tool wear prediction,” Expert Systems with Applications, vol. 211, no. 118548, 2023.
    [4] Shanbhag, V. V., Meyer, T. J., Caspers, L. W., & Schlanbusch, R, “Failure Monitoring and Predictive Maintenance of Hydraulic Cylinder—State-of-the-Art Review,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 6, pp. 3087-3103, 2021.
    [5] Kuntoğlu, M., Aslan, A., Pimenov, D. Y., Usca, Ü. A., Salur, E., Gupta, M. K., & Sharma, S, “A review of indirect tool condition monitoring systems and decision-making methods in turning critical analysis and trends,” Sensors, vol. 21, no. 1, 2021.
    [6] Kurada, S., & Bradley, C., “A review of machine vision sensors for tool condition monitoring,” Computers in industry, vol. 34, no. 1, pp. 55-72, 1997.
    [7] Arun, A., Rameshkumar, K., Unnikrishnan, D., & Sumesh, A, “Tool condition monitoring of cylindrical grinding process using acoustic emission sensor,” Materials Today: Proceedings, vol. 5, no. 5, pp. 11888-11899, 2018.
    [8] Han, S., Mannan, N., Stein, D. C., Pattipati, K. R., & Bollas, G. M., “Classification and regression models of audio and vibration signals for machine state monitoring in precision machining systems,” Journal of Manufacturing Systems, vol. 61, pp. 45-53, 2021.
    [9] Zhou, Y. Q., & Wei, X., “Review of tool condition monitoring methods in milling processes,” The International Journal of Advanced Manufacturing Technology, vol. 96, no. 5, pp. 2509-2523, 2018.
    [10] Huang, P. M., & Lee, C. H., “Estimation of tool wear and surface roughness development using deep learning and sensors fusion,” Sensors, vol. 21, no. 16, 2021.
    [11] Krishnakumar, P., Rameshkumar, K., & Ramachandran, K. I., “Feature level fusion of vibration and acoustic emission signals in tool condition monitoring using machine learning classifiers,” International Journal of Prognostics and Health Management, vol. 9, no. 1, 2018.
    [12] Xu, X., Wang, J., Zhong, B., Ming, W., & Chen, M, ” Deep learning-based tool wear prediction and its application for machining process using multi-scale feature fusion and channel attention mechanism,” Measurement, vol. 117, no. 109254, 2021.
    [13] Martínez-Arellano, G., Terrazas, G., & Ratchev, S, “Tool wear classification using time series imaging and deep learning,” The International Journal of Advanced Manufacturing Technology, vol. 104, pp. 3647-3662, 2019.
    [14] Zhou, Y., Zhi, G., Chen, W., Qian, Q., He, D., Sun, B., & Sun, W. “A new tool wear condition monitoring method based on deep learning under small samples,” Measurement, vol. 189, no. 110622, 2022.
    [15] Keogh, E., Chu, S., Hart, D., & Pazzani, M., "An online algorithm for segmenting time series," Proceedings 2001 IEEE international conference on data mining, pp. 289-296, 2001.
    [16] Hu, J., Li, S., & Gang, S., “Squeeze-and-excitation networks,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132-7141, 2018.
    [17] He, K., Zhang, X., Ren, S., & Sun, J, “Deep residual learning for image recognition,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
    [18] 黃彥翔,S2S-LSTM深度學習技術於鈦及鋁合金鏡面銑削之PCD銑刀剩餘壽命預測,國立成功大學製造資訊與系統研究所碩士論文,2020年。
    [19] Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... & Oliphant, T. E., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357-362, 2020.
    [20] Josh, P., & Adam G., “Deep learning: a practitioner’s approach, ”O’Reilly Media, United States of America, 2017.
    [21] 斎藤康毅,Deep Learning:用Python進行深度學習的基礎理論實作,歐萊禮,台灣,2017年。
    [22] Powers, D. M. W., “Evaluation: From Precision, Recall, and F-Factor to ROC, Informedness, Markedness & Correlation,” Machine Learning Technology, vol. 2, no. 1, pp. 37–63, 2007.
    [23] Xiong, Z., Cui, Y., Liu, Z., Zhao, Y., Hu, M., & Hu, J., “Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation,” Computational Materials Science, vol. 171, 2020.
    [24] Ji, W., Shi, J., Liu, X., Wang, L., & Liang, S. Y, “A novel approach of tool wear evaluation,” Journal of Manufacturing Science and Engineering, vol. 139, no. 9, 2017.
    [25] Colantonio, L., Equeter, L., Dehombreux, P., & Ducobu, F., “A Systematic Literature Review of Cutting Tool Wear Monitoring in Turning by Using Artificial Intelligence Techniques,” Machines, vol. 9, no. 12, 2021.
    [26] “ISO 3685—Tool Life Testing with Single-Point Turning Tools”, the International Organization for Standardization, 1993. Available online: https://www.iso.org/ fr/standard/9151.html.
    [27] Dolinšek, S., & Kopač, J, “Mechanism and types of tool wear; particularities in advanced cutting materials, “ Journal of Achievements in Materials and Manufacturing Engineering, vol.19, no. 1, pp. 11-18, 2006.
    [28] LI, Y. G., Liu, C. H., Hua, J. Q., & Wan, P., “Tool wear dataset of NUAA_Ideahouse,” IEEE Dataport, 2021.
    [29] “spike – Overview,” pro-micron. Available online: https://www.pro-micron.de/spike.
    [30] Siddhartha, B., Arunkumar P. Chavan, K. & Subramanya, N., “IoT Enabled Real-Time Availability and Condition Monitoring of CNC Machines,” 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), pp. 78-84, 2021.
    [31] Iliyas Ahmad, M., Yusof, Y., Mustapa, M. S., Daud, M. E., Latif, K., Kadir, A. Z. A., Saif, Y., Adam, A., & Hatem, N., “A novel integration between service-oriented IoT-based monitoring with open architecture of CNC system monitoring,” The International Journal of Advanced Manufacturing Technology, vol. 1, no. 12, 2022.
    [32] Martinov, G. M., Nikishechkin, P. A., Al Khoury, A., & Issa, A, “Control and remote monitoring of the vertical machining center by using the OPC UA protocol,” In IOP Conference Series: Materials Science and Engineering, vol. 919, no. 3, 2020.
    [33] McKinney, W., “Data structures for statistical computing in python, ” In Proceedings of the 9th Python in Science Conference, vol. 445, no. 1, pp. 51-56, 2010.
    [34] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É., “Scikit-learn: Machine learning in Python, ” the Journal of machine Learning research, vol. 12, pp. 2825-2830, 2011.
    [35] “RT-AX300 Wi-Fi Router, ” ASUS Taiwan. Available online: https://www.asus.com/ tw/networking-iot-servers/wifi-routers/asus-wifi-routers/rt-ax3000.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE