| 研究生: |
江家維 Jiang, Jia-Wei |
|---|---|
| 論文名稱: |
以含銅層狀矽酸鹽衍生之銅觸媒將己二酸一步氫化為己二醇之研究 Direct hydrogenation of adipic acid to 1,6-hexanediol over Cu/SiO2 derived from Cu-phyllosilicate |
| 指導教授: |
林裕川
Lin, Yu-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 層狀矽酸鹽 、己二酸 、動力學模型 |
| 外文關鍵詞: | adipic acid, copper, 1,6-hexandiol, hydrogenation, phyllosilicate |
| 相關次數: | 點閱:65 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討含銅層狀矽酸鹽觸媒衍生之銅觸媒與商化銅觸媒應用於己二酸催化為己二醇。合成搭載不同重量百分比之含銅層狀矽酸鹽與商化觸媒比較其物化性的差異對反應性之影響。觸媒的物化性鑑定包括:氮氣物理吸附(N2 physisorption)、X-ray繞射圖譜(XRD)、紅外光光譜分析(IR)、應耦合電漿原子發射光譜分析(ICP-AES)、穿透式電子顯微鏡(HR-TEM)、吡啶吸附紅外光譜分析(Pd-IR)、氫氣程溫還原反應(H2-TPR)、一氧化碳的化學吸附(CO chemisorption)、一氧化碳程溫脫附(CO-TPD)以及氨氣的程溫脫附反應 (NH3-TPD)。
本實驗以氨氣蒸發-水熱法來合成不同重量百分比的含銅層狀矽酸鹽,比較相同重量百分比之銅觸媒發現含銅層狀矽酸鹽衍生之觸媒具有較高的反應活性,可歸因於表面活性點較多與Cu+/Cu0比例較高。利用批次式反應器於240 oC及58 bar 氫氣壓力下進行己二酸加氫脫氧,發現觸媒物化性差異也反應在活性測試上;隨著擔載量的上升,其反應活性也隨之增加。經由產物分佈圖來建立己二酸轉化為己二醇之反應路徑圖,並探討己二酸加氫轉化之機制,利用Langmuir–Hinshelwood–Hougen–Watson (LHHW)模型來擬合,可求得己二酸的平衡速率常數略大於己內酯之平衡速率常數。由於己二酸為反應物,佔據了所有活性點,當己二酸接近百分之百轉化後,才有空出的活性點能與衍生之產物反應。
The aim of this study is to understand copper phyllosilicates derived silica-supported copper (10 wt%, 20 wt%, and 30 wt%) catalysts tested in direct hydrogenation of AA to HDOL. Different weight loading of copper phyllosilicates were used to compare the effects of differences in physicochemical properties on reactivity. Catalyst characterizations, including N2 physisorption, XRD, TEM, and H2-TPR were performed. Copper phyllosilicates catalysts were prepared by ammonia evaporation hydrothermal method. The turnover frequency calculated based on the HDOL production rate per Cu+ site of a Cu-based catalyst derived from phyllosilicate was higher than its counterpart synthesized by impregnation using similar Cu loadings (ca. 20 wt%). Moreover, catalyst reuse tests showed that phyllosilicate derived Cu/SiO2 had better recyclability than its impregnated counterpart, possibly due to stronger interaction between Cu and silica support of the former. Based on the product distribution, a plausible reaction network of hydrogenation of AA was proposed. Furthermore, kinetic analyses by resorting to a global reaction model and to the Langmuir–Hinshelwood–Hougen–Watson (LHHW) formalism were conducted. The latter is more appropriate than the former to portray the experimental results because the possible existence of competitive adsorption between AA and ε-caprolactone.
1. Sato, K., M. Aoki, and R. Noyori, A "Green" Route to Adipic Acid: Direct Oxidation of Cyclohexenes with 30 Percent Hydrogen Peroxide. Science, 1998. 281: p. 1646-1647.
2. Dugal, M., et al., Designing a Heterogeneous Catalyst for the Production of Adipic Acid by Aerial Oxidation of Cyclohexane. Angewandte Chemie International Edition, 2000. 39(13): p. 2310-2313.
3. R., F.J., Introduction to Polymer Science. Polymer Science and Technology, 3rd Edition. Chapter 2. 2014. 13-47.
4. Niu, W., K.M. Draths, and J.W. Frost, Benzene‐Free Synthesis of Adipic Acid. Biotechnology Progress, 2008. 18(2): p. 201-211.
5. 謝欣如, 生質二元羧酸技術發展與應用. 2017.
6. 陳育誠, 全球生質尼龍發展概況與廠商動態質尼龍發展概況與廠商動態. IEK產業情報網, 2014. 1-8.
7. 華夏經緯網. 年產7萬噸己二酸項目. 2009; Available from: http://big5.huaxia.com/lnsy/lngg/08hld/1528626.html.
8. Hagiya, M.H., Process for producing adipic acid, in Google Patents US7491845B2. 2004.
9. Knops-Gerrits, P.P., F. Thibault-Starzyk, and P.A. Jacobs, Adipic Acid Synthesis via Oxidation of Cyclohexene over Zeolite occulded Manganese Diimine Complexes, in Studies in Surface Science and Catalysis, J. Weitkamp, et al., Editors. 1994, Elsevier. p. 1411-1418.
10. Castellan, A., J.C.J. Bart, and S. Cavallaro, Industrial production and use of adipic acid. Catalysis Today, 1991. 9(3): p. 237-254.
11. SE, B., Production of adipic acid, in Google Patents US3876695A. 1970.
12. Lončarević, D., et al., Cyclohexane oxidation and cyclohexyl hydroperoxide decomposition by poly(4-vinylpyridine-co-divinylbenzene) supported cobalt and chromium complexes. Chemical Engineering Journal, 2010. 157(1): p. 181-188.
13. 王紅珍, 己二酸:供求逆轉,企業如何突圍, in 中化新網. 2015.
14. 陳育誠, 我國發展己二酸產品之機會分析. IEK 產業情報網, 2014.
15. 盧滄海, 國內未生產之關鍵性化學原料介紹系列. 材料世界網, 2006.
16. 1,6-Hexanediol Market by Application (Polyurethanes, Coatings, Acrylates, Adhesives, Polyester Resins, Plasticizers), and Region (Europe, North America, Asia-Pacific, South America, and Middle East & Africa) - Global Forecasts to 2021. 2017, Markets and Markets.
17. Adkins, H. and R. Connor, The Catalytic Hydrogenation of Organic Compounds over Copper Chromite. Journal of the American Chemical Society, 1931. 53(3): p. 1091-1095.
18. Pritchard, J., et al., Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chemical Society Reviews, 2015. 44(11): p. 3808-3833.
19. Kon, K., et al., Hydrodeoxygenation of fatty acids and triglycerides by Pt-loaded Nb2O5 catalysts. Catalysis Science & Technology, 2014. 4(10): p. 3705-3712.
20. Ahmadi, M., et al., Decarboxylation of oleic acid over Pt catalysts supported on small-pore zeolites and hydrotalcite. Catalysis Science & Technology, 2015. 5(1): p. 380-388.
21. Connor, R. and H. Adkins, Hydrogenolysis of Oxygenated Organic Compounds. Journal of the American Chemical Society, 1932. 54(12): p. 4678-4690.
22. Adkins, H. and A.A. Pavlic, Hydrogenation of Esters to Alcohols over Raney Nickel. I. Journal of the American Chemical Society, 1947. 69(12): p. 3039-3041.
23. He, D.-H., N. Wakasa, and T. Fuchikami, Hydrogenation of carboxylic acids using bimetallic catalysts consisting of group 8 to 10, and group 6 or 7 metals. Tetrahedron Letters, 1995. 36(7): p. 1059-1062.
24. Toba, M., et al., Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over Ru–Sn–Al2O3 catalysts. Applied Catalysis A: General, 1999. 189(2): p. 243-250.
25. 干丰丰, 唐., 暢延青, 己二酸直接迋原制 1, 6-己二醇的催化劑. in: 中華人民共和國國家知識產權局 (Ed.), 2013.
26. Huang, C., et al., Diatomite-supported Pd–M (M=Cu, Co, Ni) bimetal nanocatalysts for selective hydrogenation of long-chain aliphatic esters. Journal of Colloid and Interface Science, 2012. 386(1): p. 60-65.
27. Ding, J., et al., Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol. Applied Catalysis B: Environmental, 2017. 209: p. 530-542.
28. Vinu, A., V. Murugesan, and M. Hartmann, Pore Size Engineering and Mechanical Stability of the Cubic Mesoporous Molecular Sieve SBA-1. Chemistry of Materials, 2003. 15(6): p. 1385-1393.
29. Alfredsson, V. and M.W. Anderson, Structure of MCM-48 Revealed by Transmission Electron Microscopy. Chemistry of Materials, 1996. 8(5): p. 1141-1146.
30. Lin, H.-P. and C.-Y. Mou, Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica. Accounts of Chemical Research, 2002. 35(11): p. 927-935.
31. Bhaumik, A. and S. Inagaki, Mesoporous Titanium Phosphate Molecular Sieves with Ion-Exchange Capacity. Journal of the American Chemical Society, 2001. 123(4): p. 691-696.
32. Yokoi, T., H. Yoshitake, and T. Tatsumi, Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. Journal of Materials Chemistry, 2004. 14(6): p. 951-957.
33. Zhong, Z., et al., Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads. Advanced Materials, 2000. 12(3): p. 206-209.
34. Noll, F., M. Sumper, and N. Hampp, Nanostructure of Diatom Silica Surfaces and of Biomimetic Analogues. Nano Letters, 2002. 2(2): p. 91-95.
35. Jiang, P., J.F. Bertone, and V.L. Colvin, A Lost-Wax Approach to Monodisperse Colloids and Their Crystals. Science, 2001. 291(5503): p. 453.
36. Huo, Q., et al., Preparation of Hard Mesoporous Silica Spheres. Chemistry of Materials, 1997. 9(1): p. 14-17.
37. Fowler, C.E., et al., Nanoscale Materials with Mesostructured Interiors. Advanced Materials, 2001. 13(9): p. 649-652.
38. Fan, H., et al., Hierarchically structured functional porous silica and composite produced by evaporation-induced self-assembly. Microporous and Mesoporous Materials, 2001. 44-45: p. 625-637.
39. Giannelis, E.P., R. Krishnamoorti, and E. Manias, Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes, in Polymers in Confined Environments, S. Granick, et al., Editors. 1999, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 107-147.
40. Soil and Environmental Biogeochemistry @ Stanford University, Soil Chemistry, Mineral-Summary.
41. Boccuzzi, F., et al., Preparation, Characterization, and Activity of Cu/TiO2Catalysts. I. Influence of the Preparation Method on the Dispersion of Copper in Cu/TiO2. Journal of Catalysis, 1997. 165(2): p. 129-139.
42. Dong, F., et al., Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran. Catalysis Science & Technology, 2016. 6(3): p. 767-779.
43. Chen, L.-F., et al., Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Catalysis, 2008. 257(1): p. 172-180.
44. Sing, K.S.W., Physical and Biophysical Chemistry Division Commission on Colloid and Surface Chemistry including Catalysis. Pure Appl. Chem, 1985(57(4)): p. 603-619.
45. Di, W., et al., Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Applied Catalysis A: General, 2016. 510: p. 244-259.
46. Yue, H., et al., A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nature Communications, 2013. 4: p. 2339.
47. Van Der Grift, C.J.G., et al., Preparation of silica-supported copper catalysts by means of deposition-precipitation. Applied Catalysis, 1990. 59(1): p. 275-289.
48. Clause, O., et al., Nickel(II) Ion-Support Interactions as a Function of Preparation Method of Silica-Supported Nickel Materials. Journal of the American Chemical Society, 1992. 114(12): p. 4709-4717.
49. Toupance, T., et al., Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption. Journal of Physical Chemistry B, 2002. 106(9): p. 2277-2286.
50. Kermarec, M., et al., FTIR identification of the supported phases produced in the preparation of silica-supported nickel catalysts. Journal of Physical Chemistry®, 1994. 98(46): p. 12008-12017.
51. Gong, J., et al., Synthesis of Ethanol via Syngas on Cu/SiO2 Catalysts with Balanced Cu0–Cu+ Sites. Journal of the American Chemical Society, 2012. 134(34): p. 13922-13925.
52. Toupance, T., M. Kermarec, and C. Louis, Metal Particle Size in Silica-Supported Copper Catalysts. Influence of the Conditions of Preparation and of Thermal Pretreatments. The Journal of Physical Chemistry B, 2000. 104(5): p. 965-972.
53. Atia, H., U. Armbruster, and A. Martin, Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. Journal of Catalysis, 2008. 258(1): p. 71-82.
54. Zhou, R.-x., et al., Temperature-programmed reduction and temperature-programmed desorption studies of CuO/ZrO2 catalysts. Applied Surface Science, 1999. 148(3): p. 263-270.
55. Dong, F., et al., Ratio-controlled synthesis of phyllosilicate-like materials as precursors for highly efficient catalysis of the formyl group. Catalysis Science & Technology, 2017. 7(9): p. 1880-1891.
56. Osinga, T.J., B.G. Linsen, and W.P. van Beek, The determination of the specific copper surface area in catalysts. Journal of Catalysis, 1967. 7(3): p. 277-279.
57. Scholten, J.J.F. and J.A. Konvalinka, Reaction of nitrous oxide with copper surfaces. Application to the determination of free-copper surface areas. Transactions of the Faraday Society, 1969. 65(0): p. 2465-2473.
58. Emeis, C.A., Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 1993. 141(2): p. 347-354.
59. Crezee, E., et al., Three-phase hydrogenation of d-glucose over a carbon supported ruthenium catalyst—mass transfer and kinetics. Applied Catalysis A: General, 2003. 251(1): p. 1-17.
60. Froment, G.F.B., K. B.; Wilde, J. D., Chemical Reactor Analysis and Design. In Chemical Reactor Analysis and Design. 2010, ohn Wiley & Sons INC.: USA.