簡易檢索 / 詳目顯示

研究生: 曲在雯
Chiu, Tzai-Wen
論文名稱: 早年聽覺經驗對腦幹聽覺細胞之影響
Changes of the brainstem auditory neurons after neonatal tone exposure
指導教授: 潘偉豐
Poon, Wai-Fung
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 128
中文關鍵詞: 下丘核關鍵期神經可塑性
外文關鍵詞: neural plasticity, inferior colliculus, critcal period
相關次數: 點閱:83下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本實驗室過去的研究中已經知道出生後早期動物的聽覺經驗會改變其中腦聽神經元對聲音反應的敏感度。但是,對於中腦神經可塑性的發生時間,其變化的詳細情形,與此一幼年期的神經可塑性是否可以維持至更長的時間則仍不清楚。因此,此實驗分別探討:(一)瞭解早年的聽神經可塑性是否可以持續到老年;(二)在發育早期的不同時段中給予長期的聲音刺激對於下丘核聽神經的發育影響,及此聽神經元之神經可塑性起源;(三)探討此一早年的長期聲音刺激是否會改變下丘核的抑制性神經系統的發育。

      在第一部份的實驗採用一種具有早衰特性的小白鼠,以電生理細胞外單細胞紀錄技術來探討早年的聲音刺激對於在老年時的下丘核聽神經細胞的影響。實驗結果發現下丘核聽神經細胞可塑性的改變可以持續到老年。此外,也發現早年的長期聲音刺激可能會加速聽覺系統的老化。在第二部份的實驗分別採取兩種不同的聲音刺激流程來找出大白鼠下丘核聽神經元可塑性的關鍵期。第一種刺激流程是在出生的第一到第四周分別給予為期一周的單音(4 kHz, 65 dB SPL)刺激;第二種則是分別再在出生後的第一到四周或是從第二到五周分別給予為期四周的單音刺激。在結束聲音刺激的一周內,以電生理細胞外記錄技術來探討下丘核聽神經元對聲音反應特性的變化情形。結果發現,在單周的聲音刺激中,在第二周給予聲音刺激的實驗大白鼠下的丘核中最敏感的頻率為4-5kHz的聽神經元數目均增加最多,此一群的細胞其閾值也明顯的提高。此一結果僅只在第二周給予刺激的大白鼠下丘核中發現,其他時期給予聲音刺激並未發現類似的變化。在出生後的第一周給予聲音處理的大白鼠下丘核中可記錄到對聲音反應的聽神經元增多,但是,由於能計錄的細胞數實在太少,故此部分結果無法確定第一周的聲音處理確實是否有作用。在另外之時驗中,經過四周的聲音刺激後,兩組實驗組大白鼠下丘核中最敏感的頻率為4-5kHz的聽細胞數目均明顯的增加,同時,以第一到四周聲音刺激後增加的比率較高。第二到五周聲音刺激後,下丘核聽神經元增加的比率則與只在第二周給予聲音刺激的結果相似。此外,此二組增加的聽神經元對聲音頻率選擇性也有所不同;在第一到四周接受聲音刺激組中最敏感的頻率為4-5kHz的聽細胞對頻率的選擇範圍比較窄。另一方面,從第二到五周接受聲音刺激組大白鼠則與只在第二周經聲音處理的大白鼠相似,對頻率的選擇性比較寬廣。綜合此部分的實驗結果,影響下丘核聽神經元發育的‘關鍵期’應是出生後的第一到二周。在第三部份的實驗我們則是用抑制性神經傳導物質GABA的免疫染色方式來探討在出生後第二周給予聲音刺激對於下丘核的抑制性神經細胞的影響。結果發現在出生後第二周的控制組,下丘核只有少量的神經元含有GABA。但是,若給予三十分鐘短暫的聲音刺激後含有GABA的神經元數目顯著的增加;而此一現象並未在三周大的控制組老鼠出現。在出生後第二周內給予為期一周的聲音刺激後,下丘核神經元含有GABA的數目在沒有聲音環境下有明顯增加,但是,GABAA受體卻明顯減少。此外,這些含有GABA的神經元並不同時表現細胞活性標的蛋白-Fos。在犧牲動物前若再給予三十分鐘短暫的聲音刺激,則含有GABA神經元則明顯減少,但是,GABAA受體卻明顯增加。

      由實驗結果發現,在出生的第一與第二周中下丘核的神經可塑性仍相當高,在此一時期給予長期的聲音刺激可改變下丘核的聽神經細胞對聲音的反應特性,且此一改變是持久的。此外,在此一時間給予長期的聲音處理也會改變下丘核中含有GABA此一抑制性神經元與GABAA受體的表現。

      Response characteristics of central auditory neurons can be altered by early acoustic experience but details are not clear. Previous studies in young rats showed that the tonotopic representation and response properties of midbrain neurons can be shaped following sound exposure during the first three weeks after birth. Aims of this following-up study are to determine (a) the longer-term effects of neonatal sound exposure; (b) details of time-dependent functional changes following sound exposure at different stages and (c) changes of GABAergic system following sound exposure at the critical period.

      The first part of experiment is to determine if such experience-dependent changes at the inferior colliculus (IC) could last into old ages. A mutant strain of senescence accelerated mice (SAM) was for this study. At the old age of 15 months, an apparent cell clustering of best frequencies of cells towards the frequency of the exposing tone was still found at the IC after sound exposure during the first month. In addition, there was an increase of spontaneous activity and loss of high frequency sensitivity. Results suggested that the early sound exposure has a long-lasting effect on IC neurons and that the early acoustic over- stimulation also accelerates the senescence of the auditory system.

      The second part of experiment adopted two exposure protocols (weekly: from week-1 to week-4 or monthly: week-1to -4 and week-2 to-5). Extracellular single unit recordings and activity labeling with Fos-immunohistochemistry were used to characterize functional changes at the IC and cochlear nucleus (CN) respectively. After weekly exposures, only the week-2 exposed group showed a significant over-representation of best frequencies at the exposing frequency. In addition, only the week-2 exposed rats showed more Fos-positive labels when re-exposed to a tone with frequency modulated across the exposing tone. The fact that the aforementioned results were not found at the CN suggested that the changes occurred locally at the IC. After monthly exposures, both the week-1 to -4 and week-2 to -5 rats showed over-representation at the exposing frequency. These cells showed a narrowed frequency tuning in the week-1 to -4 exposed groups. But those in either the week-2 to -5 or week-2 exposed groups showed broadened frequency tuning. Results suggested that both tuning properties and tonotopic representation of collicular neurons are sensitively altered by acoustic over-stimulation during the first two weeks, which likely represent the critical period.

      The third part of experiment is to determine changes in the GABAergic system in the IC following the neonatal sound exposure using immunohistochemistry. In control animals, GABA-immunoreactivity increased in the IC after brief acoustic stimulation in the week-2 but not week-3 old rats. Following weekly sound exposures, more GABA-containing neurons were found in the whole IC of rats put in a silent room before sacrifice. The increased GABA-containing neurons did not express Fos protein simultaneously in their nuclei. These GABA-containing neurons disappeared after a brief acoustic stimulation. On the other hand, neonatal sound exposures down regulated the expression of GABAA receptor under a silent condition and they can be elevated by acoustic re-stimulation. Results suggested the neonatal sound exposures can shape the GABAergic inhibition in the IC.

      Findings suggested that IC is particularly plastic during the first two weeks after birth. Rats exposed to tones during this critical period have time-dependent changes on tonotopic representations and tuning properties. Such plastic changes last into old ages. In addition, the neonatal sound exposure also had effects on altering the GABAergic system in the IC.

    Table of contents Page Abstract 1 Abstract in Chinese 3 1. Introduction 6 2. Materials 19 3. Methods 25 3.1 Long-term effects of early sound exposure 25 3.2 Time dependent changes after neonatal sound exposure 27 3.3 Changes in GABAergic neurons following neonatal sound exposure 35 4. Results 39 4.1 Long-term effects of early sound exposure 39 4.2 Time dependent changes after neonatal sound exposure 43 4.3 Changes in GABAergic neurons following neonatal sound exposure 52 5. Discussion 54 6. Conclusion 70 7. References 71 Tables 80 Figures 83 Publications 127

    Abbott SD, Hughes LF, Bauer CA, Salvi R, Caspary DM (1999) Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic exposure. Neuroscience 93:1375-1381.

    Backoff PM, Caspary DM. (1994) Age-related changes in auditory brainstem responses in Fischer 344 rats: effects of rate and intensity. Hear Res 73:163-72.

    Bagri A, Sandner G, Di Scala G (1989) Effects of unilateral microinjections of GABAergic drugs into the inferior colliculus on auditory evoked potentials and on audiogenic seizure susceptibility. Exp Neurol 104:82-87.

    Batcheley BJ, Copper WA, Coleman JR (1987) Development of auditory brainstem response to tone pip stimuli in the rat. Brain Res Dev Brain Res 32:75-84.

    Benson DL, Huntsman MM, Jones EG (1994) Activity-dependent changes in GAD and preprotachykinin mRNAs in visual cortex of adult monkeys. Cereb Cortex 4:40-51.

    Bowery N (1993) GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci. 10:401-7.

    Brown MC, Kujawa SG, Liberman MC (1998) Single olivocochlear neurons in the guinea pig. II. Response plasticity due to noise conditioning. J Neurophysiol 79:3088-3097.

    Burda H (1985) Qualitative assessment of postnatal maturation of the organ of corti in two rat strains. Hear Res 17: 201-208.

    Canlon B, Miller J, Flock A, Borg E (1987) Pure tone overstimulation changes the micromechanical properties of the inner hair cell stereocilia. Hear Res 30: 65-72.
    Caspary DM, Holder TM, Hughes LF, Milbrandt JC, McKernan

    RM, Naritoku DK (1999) Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Neuroscience 93:307-312.

    Chen GD, Jastreboff PJ (1995) Salicylate-induced abnormal activity in the inferior colliculus of rats. Hear Res 82:158-178.

    Chiu TW, Liu YD, Poon PW (1998) Transient frequency and intensity sensitivities of central auditory neurons determined with sweep tone. Chin J Physiol 41:133-8.

    Clopton BM, Winfield JA (1976) Effect of early exposure to patterned sound on unit activity in rat inferior colliculus. J Neurophysiol 39:1081-1089.

    Cody AR, Russell IJ (1985) Outer hair cells in the mammalian cochlea and noise-induced Hear loss. Nature 315:662-665.

    Collet L, Moulin A, Gartner M, Morgon A (1990) Age-related changes in evoked otoacoustic emissions. The Annals Of Otology, Rhinology, And Laryngology 99:993-997.

    Copper JR, Bloom FE, Roth RH (2003) The biochemical bhasis of neuopharmacology. New york: Oxford University Press, Inc.

    Crowley DE, Hepp-Reymond MC (1966) Development of cochlear function in the ear of the infant rat. J Comp Physiol Psychol 62:427-432.

    Cynader M (1993) Prolonged sensitivity to monocular deprivation in dark-reared cats: effects of age and visual exposure. Brain Res 284:155-64.

    Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22:567-631.

    Ehret G, Romand R (1992) Development of tone response thresholds, latencies and tuning in the mouse inferior colliculus. Brain Res Dev Brain Res 67:317-326.

    Ehret G (1985) Behavioural studies on auditory development in mammals in relation to higher nervous system functioning. Acta Otolaryngol Suppl 421:31-40.

    Faingold CL (2002) Role of GABA abnormalities in the inferior colliculus pathophysiology - audiogenic seizures. Hear Res 168:223-237.

    Faingold CL, Marcinczyk MJ, Casebeer DJ, Randall ME, Arneric SP, Browning RA (1994) GABA in the inferior colliculus plays a critical role in control of audiogenic seizures. Brain Res 640:40-47.

    Faingold CL, Boersma Anderson CA, Caspary DM (1991) Involvement of GABA in acoustically-evoked inhibition in inferior colliculus neurons. Hear Res 52:201-216.

    Finney EM, Clementz BA, Hickok G, Dobkins KR (2003) Visual
    stimuli activate auditory cortex in deaf subjects: evidence from MEG. Neuroreport 14:1425-1427.

    Fuzessery Z.M (1997) Acute sensitivity to interaural time differences in the inferior colliculus of a bat that relies on passive sound localization. Hear Res 109:46-62.

    Gabriele ML, Brunso-Bechtold JK, Henkel CK (2000) Plasticity in the development of afferent patterns in the inferior colliculus of the rat after unilateral cochlear ablation. J Neurosci 20:6939-6949.

    Gates GA, Schmid P, Kujawa SG, Nam B, D'Agostino R (2000) Longitudinal threshold changes in older men with audiometric notches. Hear Res 141:220-228.

    Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex. Nature 356:150-152.

    Gleich O, Vater M (1998) Postnatal development of GABA- and glycine-like immunoreactivity in the cochlear nucleus of the Mongolian gerbil (Meriones unguiculatus). Cell Tissue Res 293:207-225.

    Heffner HE, Heffner RS (1985) Hearing in two cricetid rodents: Wood rat (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). J Comp Psychol 99:275-288.

    Helfert RH, Sommer TJ, Meeks J, Hofstetter P, Hughes LF (1999) Age-related synaptic changes in the central nucleus of the inferior colliculus of Fischer-344 rats. J Comp Neurol 406:285-298.

    Henry KR (1979) Auditory nerve and brain stem volume-conducted potentials evoked by pure-tone pips in the CBA/J laboratory mouse. Audiology 18:93-108.

    Henry KR, Chole RA (1980) Genotypic differences in behavioral, physiological, and anatomical expressions of age-related hearing loss in the laboratory mouse. Audiology 19:369-383.

    Hicks TP, Dykes RW (1983) Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition. Brain Res 274:160-164.

    Higuchi K (1997) Genetic characterization of senescence-accelerated mouse (SAM). Exp Gerontol 32:129-138.

    Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of neonatal unilateral eye closure in kittens. J Physiol 207:419-436.

    Hyson RL, Rudy JW (1987) Ontogenetic change in the analysis of sound frequency in the infant rat. Dev Psychobiol 20:189-207.

    Jewett DL, Romano MN (1972) Neonatal development of auditory system potentials averaged from the scalp of rat and cat. Brain Res 36:101-115.

    Kaas JH (1991) Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci 14:137-167.

    Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev 23:237-256.

    Kaltenbach JA, Afman CE (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140:165-172.

    Kaltenbach JA, Zhang J, Afman CE (2000) Plasticity of spontaneous neural activity in the dorsal cochlear nucleus after intense sound exposure. Hear Res 147:282-292.

    Kandiel A, Chen S, Hillman DE (1999) c-fos gene expression parallels auditory adaptation in the adult rat. Brain Res 839:292-297.

    Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133-1138.

    Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R,

    Karschin A, Bettler B (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683-687.

    Kay RH (1974) The physiology of auditory frequency analysis. Prog Biophys Mol Biol 28:109-88.

    King AJ, Hutchings ME, Moore DR, Blakemore C (1988) Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332:73-6.

    Knudsen EI, Knudsen PF (1990) Sensitive and critical periods for visual calibration of sound localization by barn owls. J Neurosci 10:222-232.

    Koay G, Heffner RS, Heffner HE (2002) Behavioral audiograms of homozygous medJ mutant mice with sodium channel deficiency and unaffected controls. Hear Res 171:111-118.

    Komiya H, Eggermont JJ (2000) Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Otolaryngol 120:750-756.

    Land PW, de Blas AL, Reddy N (1995) Immunocytochemical localization of GABAA receptors in rat somatosensory cortex and effects of tactile deprivation. Somatosens Mot Res 12:127-141.

    LeBeau FE, Rees A, Malmierca MS (1996) Contribution of GABA-
    and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J Neurophysiol 75:902-919.

    LeBeau FE, Malmierca MS, Rees A (2001) Iontophoresis in vivo demonstrates a key role for GABA(A) and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. J Neurosci 21:7303-7312.

    Lippe WR (1994) Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14:1486-1495.

    Lukasiewicz PD (1996) GABAC receptors in the vertebrate retina. Mol Neurobiol 12:181-94.

    Lo YJ, Rao SC, Sanes DH (1998) Modulation of calcium by inhibitory systems in the developing auditory midbrain. Neuroscience 83:1075-1084.

    McFadden SL, Ding D, Jiang H, Woo JM, Salvi RJ (2002) Chinchilla models of selective cochlear hair cell loss. Hear Res 174:230-238.

    Milbrandt JC, Holder TM, Wilson MC, Salvi RJ, Caspary DM (2000) GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear Res 147:251-260.

    Mills JH, Dubno JR, Boettcher FA (1998) Interaction of noise-induced hearing loss and presbyacusis. Scand Audiol Suppl 48:117-122.

    Mitchell DE (1988) The extent of visual recovery from early
    monocular or binocular visual deprivation in kittens. J Physiol 395:639-660.

    Montaguti M, Brandolini C, Ferri GG, Hatzopoulos S, Prete A, Pession A (2002) [Cisplatin and carboplatin-induced ototoxicity in children: clinical aspects and perspectives for prevention]. Acta Otorhinolaryngol Ital 22:14-18.

    Morgan J, Curran T (1991) Stimulus-transcription-coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Ann Rev Neurosci 14:421-451.

    Morgan J, Curran T (1989) Stimulus-transcription coupling in neurons: Role of cellular immdiate-early genes. Trend Neurosci 12:459-462.

    Naftalin L (1980) Frequency analysis in the cochlea and the traveling wave of von Bekesy. Physiol Chem Phys 12:521-6.

    Nomura Y, Okuma Y (1999) Age-related defects in lifespan and learning ability in SAMP8 mice. Neurobiol Aging 20:111-115.

    Nishina H, Sato H, Suzuki T, Sato M, Iba H (1990) Isolation and characterization of fra-2, an additional member of the fos gene family. Proc Natl Acad Sci U S A 87:3619-23.

    Olson CR, Freeman RD (1980) Profile of the sensitive period for monocular deprivation in kittens. Exp Brain Res 39:17-21.

    Owens DF, Kriegstein AR (2002a) Developmental neurotransmitters? Neuron 36:989-991.

    Owens DF, Kriegstein AR (2002b) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715-727.

    Owens DF, Boyce LH, Davis MB, Kriegstein AR (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414-6423.

    Pantev C, Ross B, Fujioka T, Trainor LJ, Schulte M, Schulz M (2003) Music and learning-induced cortical plasticity. Ann N Y Acad Sci 999:438-450.

    Parham K (1997) Distortion product otoacoustic emissions in the C57BL/6J mouse model of age-related hearing loss. Hear Res 112:216-234.

    Poon PW, Yu PP (2000) Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with frequency modulated stimulation. Neurosci Lett 289:9-12.

    Poon PW, Chen X (1992) Postnatal exposure to tones alters the tuning characteristics of inferior collicular neurons in the rat. Brain Res 585:391-394.

    Poon PW, Chen X, Cheung YM (1992) Differences in FM response correlate with morphology of neurons in the rat inferior colliculus. Exp Brain Res 91: 94-104.

    Poon PW, Chen X, Hwang JC (1991) Basic determinants for FM responses in the inferior colliculus of rats. Exp Brain Res 83:598-606.

    Poon PW, Chen XY, Hwang JC (1990) Altered sensitivities of auditory neurons in the rat midbrain following early postnatal exposure to patterned sounds. Brain Res 524:327-330.

    Puel JL, Uziel A (1987) Correlative development of cochlear action potential sensitivity, latency, and frequency selectivity. Brain Res 465:179-188.

    Qian Y, Jen PH (1994) Fos-like immunoreactivity elicited by sound stimulation in the auditory neurons of the big brown bat Eptesicus fuscus. Brain Res 664:241-246.

    Ribak CE, Lauterborn JC, Navetta MS, Gall CM (1993) The inferior colliculus of GEPRs contains greater numbers of cells that express glutamate decarboxylase (GAD67) mRNA. Epilepsy Res 14:105-113.

    Roberts RC, Ribak CE, Oertel WH (1985) Increased numbers of GABAergic neurons occur in the inferior colliculus of an audiogenic model of genetic epilepsy. Brain Res 361:324-338.

    Romand R, Ehret G (1990) Development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice. Brain Res Dev Brain Res 54:221-234.
    Ross KC, Waldman BC, Conejero-Goldberg C, Freed W, Coleman

    JR (2002) Transplantation of M213-2O cells with enhanced GAD67 expression into the inferior colliculus alters audiogenic seizures. Exp Neurol 177:338-340.

    Ross KC, Coleman JR (1999) Audiogenic seizures in the developmentally primed Long-Evans rat. Dev Psychobiol 34:303-313.

    Rouiller EM, Wan XS, Moret V, Liang F (1992) Mapping of c-fos expression elicited by pure tones stimulation in the auditory pathways of the rat, with emphasis on the cochlear nucleus. Neurosci Lett 144:19-24.

    Ryan AF, Furlow Z, Woolf NK, Keithley EM (1988) The spatial representation of frequency in the rat dorsal cochlear nucleus and inferior colliculus. Hear Res 36:181-9.

    Sagar SM, Sharp FR (1993) Early response genes as markers of neuronal activity and growth factor action. Adv Neurol 59:273-284.

    Saint Marie RL, Luo L, Ryan AF (1999a) Spatial representation of frequency in the rat dorsal nucleus of the lateral lemniscus as revealed by acoustically induced c-fos mRNA expression. Hear Res 128:70-74.

    Saint Marie RL, Luo L, Ryan AF (1999b) Effects of stimulus frequency and intensity on c-fos mRNA expression in the adult rat auditory brainstem. J Comp Neurol 404:258-270.
    Saitoh Y, Hosokawa M, Shimada A, Watanabe Y, Yasuda N,

    Takeda T, Murakami Y (1994) Age-related hearing impairment in senescence-accelerated mouse (SAM). Hear Res 75:27-37.

    Sanes DH, Constantine-Paton M (1985) The sharpening of frequency tuning curves requires patterned activity during development in the mouse, Mus musculus. J Neurosci 5:1152-1166.

    Sanes DH, Constantine-Paton M (1983) Altered activity patterns during development reduce neural tuning. Science 221:1183-1185.

    Sato K, Houtani T, Ueyama T, Ikeda M, Yamashita T, Kumazawa T, Sugimoto T (1993) Identification of rat brainstem sites with neuronal Fos protein induced by acoustic stimulation
    with pure tones. Acta Otolaryngol Suppl 500:18-22.

    Scheich H, Stark H, Zuschratter W, Ohl FW, Simonis CE
    (1997) Some functions of primary auditory cortex in learning and memory formation. Adv Neurol 73:179-193.

    Scheich H, Zuschratter W (1995) Mapping of stimulus features and meaning in gerbil auditory cortex with 2-deoxyglucose and c-Fos antibodies. Behav Brain Res 66:195-205.

    Sengpiel F, Stawinski P, Bonhoeffer T (1999) Influence of experience on orientation maps in cat visual cortex. Nat Neurosci 2:727-732.

    Sgambato V, Abo V, Rogard M, Besson MJ, Deniau JM (1997) Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience 81:93-112.

    Sharp FR, Sagar SM, Swanson RA (1993) Metabolic mapping with cellular resolution: c-fos vs. 2-deoxyglucose. Crit Rev Neurobiol 7:205-228.

    Shiraishi S, Shiraishi Y, Oliver DL, Altschuler RA (2001) Expression of GABA(A) receptor subunits in the rat central nucleus of the inferior colliculus. Brain Res Mol Brain Res 96:122-132.

    Shizuki K, Ogawa K, Matsunobu T, Kanzaki J, Ogita K (2002) Expression of c-Fos after noise-induced temporary threshold shift in the guinea pig cochlea. Neurosci Lett 320:73-76.

    Silveira DC, Schachter SC, Schomer DL (1999) Acoustic brainstem nuclei express Fos after flurothyl-induced generalized seizures in rats. Epilepsy Res 34:49-55.

    Simler S, Vergnes M, Marescaux C (1999) Spatial and temporal relationships between C-Fos expression and kindling of audiogenic seizures in Wistar rats. Exp Neurol 157:106-119.

    Simler S, Hirsch E, Danober L, Motte J, Vergnes M, Marescaux C (1994) C-fos expression after single and kindled audiogenic seizures in Wistar rats. Neurosci Lett 175:58-62.

    Snyder-Keller AM, Pierson MG (1992) Audiogenic seizures induce c-fos in a model of developmental epilepsy. Neurosci Lett 135:108-112.

    Sotty F, Sandner G, Gosselin O (1996) Latent inhibition in conditioned emotional response: c-fos immunolabelling evidence for brain areas involved in the rat. Brain Res
    737:243-254.

    Soucek S, Michaels L, Frohlich A (1986) Evidence for hair cell degeneration as the primary lesion in hearing loss of the elderly. J Otolaryngol 15:175-183.

    Stryker MP (1978) Postnatal development of ocular dominance columns in layer IV of the cat's visual cortex and the effects of monocular deprivation. Arch Ital Biol 116:420-426.

    Sur M, Leamey CA (2001) Development and plasticity of cortical areas and networks. Nat Rev Neurosci 2:251-262.
    Takeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K,

    Hosokawa M (1997) Pathobiology of the senescence-accelerated mouse (SAM). Exp Gerontol 32:117-127.

    Takeda T, Hosokawa M, Higuchi K (1991) Senescence-accelerated mouse (SAM): a novel murine model of accelerated senescence. J Am Geriatr Soc 39:911-919.

    Telford S, Wang S, Redgrave P (1996) Analysis of nociceptive neurons in the rat superior colliculus using c-fos immunohistochemistry. J Comp Neurol 375:601-617.

    Trune D, Kempton JB, Mitchell C (1996) Auditory function in the C3H/HeJ and C3H/HeSnJ mouse strains. Hear Res 96:41-45.

    Uziel A, Roman R, Marot M (1981) Development of cochlear potentials in rats. Audiology 20:89-100.

    van Luijtelaar G, Fabene PF, de Bruin N, Jongema C, Ellenbroek BA, Veening JG (2001) Neural correlates of sensory gating in the rat: decreased Fos induction in the lateral septum. Brain Res Bull 54:145-151.

    Vargo JM, Marshall JF (1995) Time-dependent changes in dopamine agonist-induced striatal Fos immunoreactivity are related to sensory neglect and its recovery after unilateral prefrontal cortex injury. Synapse 20:305-315.

    Vaughan DW (1977) Age related deterioration of pyramidal cell basal dendrites in rat auditory cortex. J Comp Neurol 171:501-515.

    Vischer MW, Hausler R, Rouiller EM (1994) Distribution of Fos-like immunoreactivity in the auditory pathway of the Sprague-Dawley rat elicited by cochlear electrical stimulation. Neurosci Res 19:175-185.

    Wan H, Warburton EC, Kusmierek P, Aggleton JP, Kowalska DM, Brown MW (2001) Fos imaging reveals differential neuronal activation of areas of rat temporal cortex by novel and familiar sounds. Eur J Neurosci 14:118-124.

    Weinberger NM (1995) Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu Rev Neurosci 18:129-158.

    Weinberger NM, Javid R, Lepan B (1993) Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proc Natl Acad Sci U S A 90:2394-2398.

    Welker E, Soriano E, Dorfl J, Van der Loos H (1989) Plasticity in the barrel cortex of the adult mouse: transient increase of GAD-immunoreactivity following sensory stimulation. Exp Brain Res 78:659-664.

    Wisel TN (1982) Postnatal development of the visual cortex and the influence of environmental. Nature 299:583-591.

    Wiesel TN (1971) Effects of monocular deprivation on the cat's visual cortex. Trans Am Acad Ophthalmol Otolaryngol 75:1186-1198.

    Willott JF (1990) Central physiological correlates of ageing and presbycusis in mice. Acta Otolaryngol Suppl 476:153-155.

    Wright A, Davis A, Bredberg G, Ulehlova L, Spencer H (1987) Hair cell distributions in the normal human cochlea. Acta Otolaryngol Suppl 444:1-48.

    Wu JL, Chiu TW, Poon PWF (2003) Differential changes in Fos-immunoreactivity at the auditory brainstem after chronic injections of salicylate in rats. Hear Res 176:80-93.

    Zhang JS, Kaltenbach JA, Wang J, Kim SA (2003) Fos-like immunoreactivity in auditory and nonauditory brain structures of hamsters previously exposed to intense sound. Exp Brain Res 153:655-660.

    Zhang LI, Bao S, Merzenich MM (2002) Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proc Natl Acad Sci U S A 99:2309-2314.

    Zhang LI, Bao S, Merzenich MM (2001) Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 4:1123-1130.

    Zrull MC and Coleman JR (1997) Effects of tectal grafts on sound localization deficits induced by inferior colliculus lesions in hooded rats. Exp Neurol 145:16-23.

    Zuschratter W, Gass P, Herdegen T, Scheich H (1995) Comparison of frequency-specific c-Fos expression and fluoro-2-deoxyglucose uptake in auditory cortex of gerbils (Meriones unguiculatus). Eur J Neurosci 7:1614-1626.

    下載圖示 校內:2007-08-20公開
    校外:2009-08-20公開
    QR CODE