簡易檢索 / 詳目顯示

研究生: 吳賀陞
Wu, He-Sheng
論文名稱: 使用地基GNSS接收站與全球閃電定位網路資料探討火山閃電相關之電離層擾動
Exploration of Ionospheric Disturbances Associated with Volcanic Lightning Using Ground-based GNSS and WWLLN data
指導教授: 陳炳志
Chen, Bing-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 81
中文關鍵詞: 全球閃電定位網GNSS垂直全電子含量火山閃電電離層擾動
外文關鍵詞: WWLLN, GNSS, VTEC, volcanic lightning, ionosphere disturbance
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過往對火山閃電的研究多集中於其起電機制與煙流內部電荷結構,對其對電離層的動態影響則著墨較少。本研究旨在探討火山閃電事件和電離層電子濃度的相關性。研究利用全球導航衛星系統(GNSS)地基接收站資料計算垂直全電子含量(VTEC),並結合全球閃電定位網之閃電資料,針對四座具代表性的火山噴發──冰島Eyjafjallajökull(2010)、智利Calbuco(2015)、瓜地馬拉Fuego(2018)與聖文森火山La Soufrière St. Vincent(2021)進行分析。
    研究首先建立火山閃電判定演算法,依據空間分布和時間連續性篩選近火山口的閃電事件,並以混淆矩陣評估演算法準確度。接著以地基GNSS資料計算火山上空和參照點100 km範圍內的VTEC平均值,並計算每30秒的VTEC差值以觀察瞬時擾動。在長時趨勢方面,大型噴發事件前後之VTEC呈現明顯下降趨勢,此現象符合岩石層-大氣層-電離層耦合模型之預期,說明噴發引起的大氣電場滲透與焦耳加熱效應確實會改變電離層電子分佈。在瞬時擾動方面,火山閃電與火山上空的瞬時擾動無顯著相關,但在火山周圍則觀測到趨勢不一致的VTEC微弱擾動。此空間分佈特徵符合電磁脈衝甜甜圈狀輻射場特性。本研究嘗試釐清火山閃電對電離層擾動所扮演的角色,並解釋上升電流模型在瞬時噴發情境下並不適用。

    Previous research on volcanic lightning has predominantly focused on its charging mechanisms and the internal charge structure of the plume, while its dynamic impact on the ionosphere remains insufficiently explored. This study aims to investigate the effects of volcanic lightning events on ionospheric electron density. Utilizing ground-based GNSS data to derive Vertical Total Electron Content (VTEC) and lightning data from the World Wide Lightning Location Network (WWLLN), this research analyzed four representative volcanic eruptions: Eyjafjallajökull (2010), Calbuco (2015), Fuego (2018), and La Soufrière St. Vincent (2021).
    A volcanic lightning identification algorithm was first developed based on spatial distribution and temporal continuity, with its accuracy evaluated using a confusion matrix. Subsequently, mean VTEC values and 30-second VTEC differences (diff30s) were calculated to monitor instantaneous plasma disturbances. For long-term Trends, a significant decreasing trend in VTEC was observed around major eruption events. This phenomenon is consistent with the Lithosphere-Atmosphere-Ionosphere Coupling model, suggesting that atmospheric electric field penetration and Joule heating induced by the eruption significantly alter the ionospheric electron distribution. For instantaneous disturbances, no significant correlation was found between rapid VTEC fluctuations above the vent and volcanic lightning pulses. However, weak and inconsistent VTEC perturbations were observed in the surrounding areas. This spatial distribution is consistent with the donut-shaped radiation pattern of EMP from return strokes. This research tries to clarify the role of volcanic lightning in ionospheric disturbances and provides physical evidence explaining why the existing Upward Current model may not be applicable in the context of transient volcanic eruption scenarios.

    摘要 2 ABSTRACT 3 目錄 11 圖目錄 13 表目錄 15 第1章 緒論 16 1.1 火山噴發類型和噴發摘要 17 1.2 火山閃電的起電機制 21 1.2.1 摩擦起電 22 1.2.2 破碎起電 23 1.2.3 水相參與的起電 23 1.2.4 放射性起電 24 1.3 火山煙流的電荷結構 25 1.4 火山閃電種類 26 1.5 電離層觀測 27 1.5.1 電離層特性 27 1.5.2 電離層延遲 29 1.5.3 電離層量測 30 1.6 火山爆發影響電離層的途徑 33 第2章 科學資料和火山閃電篩選 40 2.1 全球火山計畫 40 2.2 全球閃電定位系統 41 2.3 火山閃電篩選 42 2.4 地基GNSS觀測 47 第3章 電離層擾動分析方法 49 第4章 火山閃電和電離層擾動分析討論 51 第5章 結論 55 參考文獻 56

    Abreu, D., Chandan, D., Holzworth, R. H., & Strong, K. (2010). A performance assessment of the World Wide Lightning Location Network (WWLLN) via comparison with the Canadian Lightning Detection Network (CLDN). Atmospheric Measurement Techniques, 3(4), 1143–1153. https://doi.org/10.5194/amt-3-1143-2010
    Aizawa, K., Cimarelli, C., Alatorre-Ibargüengoitia, M. A., Yokoo, A., Dingwell, D. B., & Iguchi, M. (2016). Physical properties of volcanic lightning: Constraints from magnetotelluric and video observations at Sakurajima volcano, Japan. Earth and Planetary Science Letters, 444, 45–55. https://doi.org/10.1016/j.epsl.2016.03.024
    Angrisano, A., Gaglione, S., Gioia, C., Massaro, M., & Troisi, S. (2013). Benefit of the NeQuick Galileo Version in GNSS Single-Point Positioning. International Journal of Navigation and Observation, 2013, 1–11. https://doi.org/10.1155/2013/302947
    Aplin, K. L., Houghton, I. M. P., & Nicoll, K. A. (2014). Electrical charging of ash in Icelandic volcanic plumes (arXiv:1404.6905). arXiv. https://doi.org/10.48550/arXiv.1404.6905
    Arason, P., Petersen, G. N., & Bjornsson, H. (2011). Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April–May 2010. Earth System Science Data, 3(1), 9–17. https://doi.org/10.5194/essd-3-9-2011
    Astafyeva, E. (2019). Ionospheric Detection of Natural Hazards. Reviews of Geophysics, 57(4), 1265–1288. https://doi.org/10.1029/2019RG000668
    Baissac, D. M., Nicora, M. G., Bali, L. J., Badi, G. A., & Ávila, E. E. (2021). Volcanic alert system by lightning detection using the WWLLN - ash cloud monitor. Journal of South American Earth Sciences, 108, 103234. https://doi.org/10.1016/j.jsames.2021.103234
    Baytekin, H. T., Baytekin, B., Soh, S., & Grzybowski, B. A. (2011). Is Water Necessary for Contact Electrification? Angewandte Chemie International Edition, 50(30), 6766–6770. https://doi.org/10.1002/anie.201008051
    Behnke, S. A., Thomas, R. J., McNutt, S. R., Schneider, D. J., Krehbiel, P. R., Rison, W., & Edens, H. E. (2013). Observations of volcanic lightning during the 2009 eruption of Redoubt Volcano. Journal of Volcanology and Geothermal Research, The 2009 Eruption of Redoubt Volcano, Alaska, 259, 214–234. https://doi.org/10.1016/j.jvolgeores.2011.12.010
    Bennett, A. J., Odams, P., Edwards, D., & Arason, Þ. (2010). Monitoring of lightning from the April–May 2010 Eyjafjallajökull volcanic eruption using a very low frequency lightning location network. Environmental Research Letters, 5(4), 044013. https://doi.org/10.1088/1748-9326/5/4/044013
    Charbonnier, S. J., Garin, F., Rodríguez, L. A., Ayala, K., Cancel, S., Escobar-Wolf, R., Chigna, G., Chun-Quinillo, C., González, D., Chigna, W., Chun-Quinillo, K., Mérida, R., Juarez, F., & Calder, E. S. (2023). Unravelling the dynamics and hazards of the June 3rd, 2018, pyroclastic density currents at Fuego volcano (Guatemala). Journal of Volcanology and Geothermal Research, 436, 107791. https://doi.org/10.1016/j.jvolgeores.2023.107791
    Chernogor, L. F., & Mylovanov, Yu. B. (2023). Electron Density Reduction Caused by the Tonga Volcano Eruption on January 15, 2022. Kinematics and Physics of Celestial Bodies, 39(4), 204–216. https://doi.org/10.3103/S0884591323040037
    Cimarelli, C., Alatorre-Ibargüengoitia, M. A., Kueppers, U., Scheu, B., & Dingwell, D. B. (2014). Experimental generation of volcanic lightning. Geology, 42(1), 79–82. https://doi.org/10.1130/G34802.1
    Cimarelli, C., Behnke, S., Genareau, K., Harper, J. M., & Van Eaton, A. R. (2022). Volcanic electrification: Recent advances and future perspectives. Bulletin of Volcanology, 84(8), 78. https://doi.org/10.1007/s00445-022-01591-3
    Cimarelli, C., & Genareau, K. (2022). A review of volcanic electrification of the atmosphere and volcanic lightning. Journal of Volcanology and Geothermal Research, 422, 107449. https://doi.org/10.1016/j.jvolgeores.2021.107449
    Clement, C. F., & Harrison, R. G. (1992). The charging of radioactive aerosols. Journal of Aerosol Science, 23(5), 481–504. https://doi.org/10.1016/0021-8502(92)90019-R
    Dickinson, J. T., Donaldson, E. E., & Park, M. K. (1981). The emission of electrons and positive ions from fracture of materials. Journal of Materials Science, 16(10), 2897–2908. https://doi.org/10.1007/BF02402856
    Dowden, R. L., Brundell, J. B., & Rodger, C. J. (2002). VLF lightning location by time of group arrival (TOGA) at multiple sites. Journal of Atmospheric and Solar-Terrestrial Physics, 64(7), 817–830. https://doi.org/10.1016/S1364-6826(02)00085-8
    Forward, K. M., Lacks, D. J., & Sankaran, R. M. (2009a). Particle-size dependent bipolar charging of Martian regolith simulant. Geophysical Research Letters, 36(13). https://doi.org/10.1029/2009GL038589
    Forward, K. M., Lacks, D. J., & Sankaran, R. M. (2009b). Triboelectric charging of lunar regolith simulant. Journal of Geophysical Research: Space Physics, 114(A10). https://doi.org/10.1029/2009JA014559
    Global Volcanism Program | Current Eruptions. (n.d.). Smithsonian Institution | Global Volcanism Program. Retrieved January 15, 2026, from https://volcano.si.edu/gvp_currenteruptions.cfm
    Global Volcanism Program | Report on Eyjafjallajokull (Iceland)—April 2011. (n.d.). Retrieved June 16, 2025, from https://volcano.si.edu/ShowReport.cfm?doi=10.5479/si.GVP.BGVN201104-372020
    Global Volcanism Program | Report on Fuego (Guatemala)—August 2018. (n.d.). Retrieved September 3, 2025, from https://volcano.si.edu/ShowReport.cfm?doi=10.5479/si.GVP.BGVN201808-342090
    Global Volcanism Program | Report on Soufriere St. Vincent (Saint Vincent and the Grenadines)—May 2021. (n.d.). Retrieved September 3, 2025, from https://volcano.si.edu/showreport.cfm?doi=10.5479/si.GVP.BGVN202105-360150
    Greenberg, E., Price, C., Yair, Y., Ganot, M., Bór, J., & Sátori, G. (2007). ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms. Journal of Atmospheric and Solar-Terrestrial Physics, 69(13), 1569–1586. https://doi.org/10.1016/j.jastp.2007.06.002
    Griffiths, D. J. (2013). Introduction to electrodynamics (4. ed., international ed). Pearson.
    Grosjean, G., & Waitukaitis, S. (2023). Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts. Physical Review Materials, 7(6), 065601. https://doi.org/10.1103/PhysRevMaterials.7.065601
    Gudmundsson, M. T., Thordarson, T., Höskuldsson, Á., Larsen, G., Björnsson, H., Prata, F. J., Oddsson, B., Magnússon, E., Högnadóttir, T., Petersen, G. N., Hayward, C. L., Stevenson, J. A., & Jónsdóttir, I. (2012). Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Scientific Reports, 2(1), 572. https://doi.org/10.1038/srep00572
    Hines, C. O. (1960). Internal atmospheric gravity waves at ionospheric heights. Canadian Journal of Physics, 38(11), 1441–1481. https://doi.org/10.1139/p60-150
    Houghton, I. M. P., Aplin, K. L., & Nicoll, K. A. (2013). Triboelectric Charging of Volcanic Ash from the 2011 Grímsvötn Eruption. Physical Review Letters, 111(11), 118501. https://doi.org/10.1103/PhysRevLett.111.118501
    Iyemori, T., Nishioka, M., Otsuka, Y., & Shinbori, A. (2022). A confirmation of vertical acoustic resonance and field-aligned current generation just after the 2022 Hunga Tonga Hunga Ha’apai volcanic eruption. Earth, Planets and Space, 74(1), 103. https://doi.org/10.1186/s40623-022-01653-y
    J. Sanz Subirana, J.M. Juan Zornoza, & M. Hernández-Pajares. (2011). Ionospheric Delay—Navipedia. https://gssc.esa.int/navipedia/index.php/Ionospheric_Delay
    Jovanovic, G. (2024). Acoustic–gravity waves and their role in the ionospheric D region–lower thermosphere interaction. Annales Geophysicae, 42(2), 491–500. https://doi.org/10.5194/angeo-42-491-2024
    Kadono, T., Ogawa, K., Shirai, K., & Kobayashi, H. (2025). Charge density on fracture surfaces and contact electrification of identical materials. Physical Review E, 111(1), 015502. https://doi.org/10.1103/PhysRevE.111.015502
    Kelley, M. C. (2009). The earth’s ionosphere: Plasma physics and electrodynamics (2nd ed). Academic Press.
    Kolmašová, I., Santolík, O., Kašpar, P., Popek, M., Pizzuti, A., Spurný, P., Borovička, J., Mlynarczyk, J., Manninen, J., Macotela, E. L., Zacharov, P., Lán, R., Uhlíř, L., Diendorfer, G., Bennett, A., Füllekrug, M., & Slošiar, R. (2021). First Observations of Elves and Their Causative Very Strong Lightning Discharges in an Unusual Small-Scale Continental Spring-Time Thunderstorm. Journal of Geophysical Research: Atmospheres, 126(1), e2020JD032825. https://doi.org/10.1029/2020JD032825
    Kuo, C. L., & Lee, L. C. (2015). Ionospheric plasma dynamics and instability caused by upward currents above thunderstorms. Journal of Geophysical Research: Space Physics, 120(4), 3240–3253. https://doi.org/10.1002/2014JA020767
    Kuo, C. L., Lee, L. C., & Huba, J. D. (2014). An improved coupling model for the lithosphere-atmosphere-ionosphere system. Journal of Geophysical Research: Space Physics, 119(4), 3189–3205. https://doi.org/10.1002/2013JA019392
    Lacks, D. J., & Levandovsky, A. (2007). Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. Journal of Electrostatics, 65(2), 107–112. https://doi.org/10.1016/j.elstat.2006.07.010
    Lay, E. H., Shao, X.-M., & Carrano, C. S. (2013). Variation in total electron content above large thunderstorms. Geophysical Research Letters, 40(10), 1945–1949. https://doi.org/10.1002/grl.50499
    Lin, J.-T., Rajesh, P. K., Lin, C. C. H., Chou, M.-Y., Liu, J.-Y., Yue, J., Hsiao, T.-Y., Tsai, H.-F., Chao, H.-M., & Kung, M.-M. (2022). Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere After Hunga-Tonga Volcano Eruptions. Geophysical Research Letters, 49(8), e2022GL098222. https://doi.org/10.1029/2022GL098222
    Lowell, J., & Rose-Innes, A. C. (1980). Contact electrification. Advances in Physics, 29(6), 947–1023. https://doi.org/10.1080/00018738000101466
    Lowell, J., & Truscott, W. S. (1986a). Triboelectrification of identical insulators. I. An experimental investigation. Journal of Physics D: Applied Physics, 19(7), 1273–1280. https://doi.org/10.1088/0022-3727/19/7/017
    Lowell, J., & Truscott, W. S. (1986b). Triboelectrification of identical insulators. II. Theory and further experiments. Journal of Physics D: Applied Physics, 19(7), 1281–1298. https://doi.org/10.1088/0022-3727/19/7/018
    M. R. James, S. J. Lane, & J. S. Gilbert. (n.d.). Volcanic plume electrification: Experimental investigation of a fracture‐charging mechanism. Retrieved June 14, 2025, from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2000JB900068
    McCarty, L. S., & Whitesides, G. M. (2008). Electrostatic Charging Due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets. Angewandte Chemie International Edition, 47(12), 2188–2207. https://doi.org/10.1002/anie.200701812
    McNutt, S. R., & Thomas, R. J. (2015). Volcanic Lightning. In H. Sigurdsson (Ed.), The Encyclopedia of Volcanoes (Second Edition) (pp. 1059–1067). Academic Press. https://doi.org/10.1016/B978-0-12-385938-9.00062-6
    McNutt, S. R., & Williams, E. R. (2010). Volcanic lightning: Global observations and constraints on source mechanisms. Bulletin of Volcanology, 72(10), 1153–1167. https://doi.org/10.1007/s00445-010-0393-4
    Méndez Harper, J., Cimarelli, C., Cigala, V., Kueppers, U., & Dufek, J. (2021). Charge injection into the atmosphere by explosive volcanic eruptions through triboelectrification and fragmentation charging. Earth and Planetary Science Letters, 574, 117162. https://doi.org/10.1016/j.epsl.2021.117162
    Mika, Á., Haldoupis, C., Neubert, T., Su, H. T., Hsu, R. R., Steiner, R. J., & Marshall, R. A. (2006). Early VLF perturbations observed in association with elves. Annales Geophysicae, 24(8), 2179–2189. https://doi.org/10.5194/angeo-24-2179-2006
    Miura, T., Tanaka, Y., & Koyaguchi, T. (2002). Measurements of electric charge distribution in volcanic plumes at Sakurajima Volcano, Japan. Bulletin of Volcanology, 64(2), 75–93. https://doi.org/10.1007/s00445-001-0182-1
    Nicoll, K., Airey, M., Cimarelli, C., Bennett, A., Harrison, G., Gaudin, D., Aplin, K., Koh, K. L., Knuever, M., & Marlton, G. (2019). First In Situ Observations of Gaseous Volcanic Plume Electrification. Geophysical Research Letters, 46(6), 3532–3539. https://doi.org/10.1029/2019GL082211
    Pulinets, S., & Boyarchuk, K. (2005). Ionospheric Precursors of Earthquakes. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/b137616
    Pulinets, S., & Ouzounov, D. (2011). Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model – An unified concept for earthquake precursors validation. Journal of Asian Earth Sciences, Validation of Earthquake Precursors-VESTO, 41(4), 371–382. https://doi.org/10.1016/j.jseaes.2010.03.005
    Romero, J. E., Morgavi, D., Arzilli, F., Daga, R., Caselli, A., Reckziegel, F., Viramonte, J., Díaz-Alvarado, J., Polacci, M., Burton, M., & Perugini, D. (2016). Eruption dynamics of the 22–23 April 2015 Calbuco Volcano (Southern Chile): Analyses of tephra fall deposits. Journal of Volcanology and Geothermal Research, 317, 15–29. https://doi.org/10.1016/j.jvolgeores.2016.02.027
    Shinbori, A., Otsuka, Y., Sori, T., Nishioka, M., Septi, P., Tsuda, T., Nishitani, N., Kumamoto, A., Tsuchiya, F., Matsuda, S., Kasahara, Y., Matsuoka, A., Nakamura, S., Miyoshi, Y., & Shinohara, I. (2023). New aspects of the upper atmospheric disturbances caused by the explosive eruption of the 2022 Hunga Tonga–Hunga Ha’apai volcano. Earth, Planets and Space, 75(1), 175. https://doi.org/10.1186/s40623-023-01930-4
    Smith, C. M., Van Eaton, A. R., Charbonnier, S., McNutt, S. R., Behnke, S. A., Thomas, R. J., Edens, H. E., & Thompson, G. (2018). Correlating the electrification of volcanic plumes with ashfall textures at Sakurajima Volcano, Japan. Earth and Planetary Science Letters, 492, 47–58. https://doi.org/10.1016/j.epsl.2018.03.052
    Sorokin, V. M., & Chmyrev, V. M. (2010). Atmosphere–Ionosphere Electrodynamic Coupling. In V. Bychkov, G. Golubkov, & A. Nikitin (Eds.), The Atmosphere and Ionosphere: Dynamics, Processes and Monitoring (pp. 97–146). Springer Netherlands. https://doi.org/10.1007/978-90-481-3212-6_3
    Soufriere a VEI 4 | VolcanoCafe. (n.d.). Retrieved October 30, 2025, from https://www.volcanocafe.org/soufriere-a-vei-4/
    SpaceWeatherLive.com | 即時數據和極光活動圖. (n.d.). SpaceWeatherLive.com. Retrieved January 20, 2026, from https://spaceweatherlive.com/zh.html
    Sprite—ISUAL. (n.d.-a). Retrieved January 19, 2026, from http://sprite.phys.ncku.edu.tw/joomla3/index.php?option=com_content&view=category&id=13&Itemid=102
    Sprite—ISUAL. (n.d.-b). Retrieved January 14, 2026, from http://sprite.phys.ncku.edu.tw/joomla3/index.php?option=com_content&view=category&id=12&Itemid=102
    Thomas, R. J., Krehbiel, P. R., Rison, W., Edens, H. E., Aulich, G. D., McNutt, S. R., Tytgat, G., & Clark, E. (2007). Electrical activity during the 2006 Mount St. Augustine volcanic eruptions. Science, 315, 1097–1097. https://doi.org/10.1126/science.1136091
    Uman, M. A., McLain, D. K., & Krider, E. P. (1975). The electromagnetic radiation from a finite antenna. American Journal of Physics, 43(1), 33–38. https://doi.org/10.1119/1.10027
    Van Eaton, A. R., Schneider, D. J., Smith, C. M., Haney, M. M., Lyons, J. J., Said, R., Fee, D., Holzworth, R. H., & Mastin, L. G. (2020). Did ice-charging generate volcanic lightning during the 2016–2017 eruption of Bogoslof volcano, Alaska? Bulletin of Volcanology, 82(3), 24. https://doi.org/10.1007/s00445-019-1350-5
    Wright, C. J., Hindley, N. P., Alexander, M. J., Barlow, M., Hoffmann, L., Mitchell, C. N., Prata, F., Bouillon, M., Carstens, J., Clerbaux, C., Osprey, S. M., Powell, N., Randall, C. E., & Yue, J. (2022). Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha’apai eruption. Nature, 609(7928), 741–746. https://doi.org/10.1038/s41586-022-05012-5
    WWLLN. (n.d.). Retrieved August 6, 2025, from https://dudwlln.otago.ac.nz/
    Zhang, Y., Pähtz, T., Liu, Y., Wang, X., Zhang, R., Shen, Y., Ji, R., & Cai, B. (2015). Electric Field and Humidity Trigger Contact Electrification. Physical Review X, 5(1), 011002. https://doi.org/10.1103/PhysRevX.5.011002
    林昱丞. (2020). 對流層雷暴系統對電離層變動的影響分析 [國立成功大學太空與電漿科學研究所]. https://hdl.handle.net/11296/74vngk

    QR CODE