簡易檢索 / 詳目顯示

研究生: 卓逸凡
Cho, I-Fan
論文名稱: 包含餘震之機率式地震危害度分析
Probabilistic Seismic Hazard Analysis Including Aftershocks
指導教授: 洪李陵
Hong, Li-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 107
語文別: 中文
論文頁數: 152
中文關鍵詞: 機率式地震危害度分析年超越機率餘震
外文關鍵詞: PSHA, Aftershocks, Annual Probability of Excess
相關次數: 點閱:135下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討加入餘震對機率式地震危害度分析的影響,比較不同案例及場址加入餘震前後PGA的年超越機率增加率。主要分為兩部份,第一部份為程式之驗證,參照PEER2018/03之案例,分別針對震源模式的差異、開裂面位置、面積、傾角、深度、地震規模和GMPE的不確定性,進行PSHA模擬及分析,並將本文的各場址PGA年超越機率與PEER2018/03提供的13套軟體分析結果進行比較;第二部份考慮加入餘震的場址PGA年超越機率,假設餘震均勻分佈於主震周邊,分別針對斷層震源、面震源、單次震源進行分析並比較餘震造成的超越機率增加率。本文結論為:(1) PEER2018/03所選擇的核心軟體並不一定能代表真實的地震PGA年超越機率,若以全部軟體進行判斷,結果會更為可信,本文使用的程式分析結果皆位於全部軟體的最大值與最小值之間,初步判定本文結果合理。(2) PEER2018/03的部份軟體在對稱的兩場址PGA年超越機率不一致,研判乃開裂面移動步數沒有修正為整數所導致。(3) 加入餘震後的各場址PGA年超越機率會上升,上升的比率與主震規模與場址位置有密切關聯,而又以場址和震源的相對位置影響最盛。(4) 餘震所致之超越機率增加率在高PGA時會提高,因此判斷需PSHA要考慮餘震的超越機率增加率影響較為完善。(5) 場址離斷層越遠,餘震的影響越大,反之亦然,乃因餘震分佈廣,且為均勻分佈之故。(6) 面震源餘震危害度貢獻最高的場址坐落於圓心,乃因離中央場址較遠的主震,其餘震回到場址附近的機會高於其他場址。(7) 主震為單次震源的情況下,場址離主震越近,餘震危害度貢獻比例越低,反之亦然。

    The purpose of this paper is to investigate the impact of the addition of aftershocks on the probability seismic hazard analysis, and to compare the increase of PGA annual rate in different cases exclude and include the aftershocks. It is mainly divided into two parts. The first part is the verification of the program according to the case of PEER2018/03. The second part considers the PGA annual excess probability of include aftershocks. Assume that the aftershocks are uniformly distributed around mainshock. Fault source, surface source, and single source were analyzed and compared. The conclusions of this paper are as follows: (1) The core software selected by PEER2018/03 does not absolutely represent the actual PGA annual probability of excess. If judged by all software, the result will be more credible. The program results of this paper are all located between the maximum and minimum values of all software, then interfering that the results is reasonable. (2) Some software results of PEER2018/03 are not same in the symmetric two sites. The judgment is that the number of moving steps of the cracking surface is not corrected to an integer. (3) The PGA annual probability of excess of each site will increase after the addition of aftershocks. The rate of increase is closely related to the magnitude of the mainshock and the location of the site, and is most affected by the relative position of the site and the source. (4) The rate of increase caused by aftershocks will increase at high PGA. Therefore, it is necessary to judge the need for PSHA to consider the effect of aftershocks. (5) The farther the site is from the fault, the greater the impact of the aftershocks is. The aftershocks are widely distributed and evenly distributed. (6) The site with the highest contribution to the aftershock damage of the surface source is located in the center of the circle, which is due to the main shock far from the central site. The chances of the other earthquakes returning to the vicinity of the site are higher than those of other sites. (7) When the mainshock is a single source, the closer the site is to the mainshock, the lower the contribution of the aftershock make, and vice versa.

    摘要 I 目錄 VII 表目錄 IX 圖目錄 XII 符號表 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 1 1.2.1 地震目錄資料簡介 1 1.2.2 機率式地震危害度分析 2 1.3 本文研究內容 4 第二章 考慮餘震之地震危害度分析 5 2.1 地震危害度分析 5 2.2 考慮餘震之地震危害度分析 8 2.3 餘震相關參數之估計 9 2.3.1 餘震次數的完整性 10 2.3.2 餘震的平均發生次數 11 2.3.3 餘震的規模分佈 13 2.3.4 餘震的空間分佈 14 第三章 PEER2018/03年超越機率模擬 28 3.1 PEER2018/03簡介 28 3.2 PEER2018/03 Set 1各案例說明 31 3.2.1 震源形式 31 3.2.2 開裂面位置的不確定性 31 3.2.3 開裂面面積的不確定性 32 3.2.4 規模的不確定性 33 3.2.5 GMPE的不確定性 35 3.2.6 面震源情況說明 35 3.3 各測試案例結果分析 35 3.3.1 `Test 1.1(開裂面積等於斷層) 36 3.3.2 Test 1.2(開裂面積小於斷層) 36 3.3.3 Test 1.3(考慮開裂面積的不確定性) 37 3.3.4 Test 1.4 (傾斜斷層) 39 3.3.5 Test 1.5至Test 1.7 (考慮規模不確定性) 39 3.3.6 Test 1.8(考慮GMPE不確定性) 41 3.3.7 Test 1.10和1.11(面震源分析) 43 3.4 小結 44 第四章 考量餘震之危害度分析 108 4.1 分析方式簡介 108 4.2 各案例說明及結果分析 109 4.2.1 Test 2.1及Test 2.2 (GMPE不確定性) 110 4.2.2 Test 2.5及Test 2.7(規模分佈) 111 4.2.3 Test 2.10及Test 2.11(面震源) 112 4.2.4 Test 3.1 (921震源模擬之餘震超越機率) 113 4.3 第四章小結 114 第五章 結論與建議 147 5.1 結論 147 5.2 建議 148 參考文獻 150

    Abrahamson, N. A. & Silva, W. J. (1997), Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes, Seismological Research Letter, Vol. 68, pp.105-106.
    Bommer, J. J. (2002), Deterministic VS. Probabilitic Seismic Hazard Assessment: an Exaggerated and Obstructive Dichotomy, Journal of Earthquake Engineering, Vol. 6, pp. 43-73.
    Chang, C.-H., Wu, Y.-M., Zhao, L., & Wu, F. T. (2007). Aftershocks of the 1999 Chi-Chi, Taiwan, Earthquake: The First Hour, Bulletin of the Seismological Society of America, Vol. 97(4), pp. 1245–1258.
    Chang, Y.-W., Loh, C.-H. & Jean, W.-Y.(2017) Time-Predictable Model Application in Probabilistic Seismic Hazard Analysis of Faults in Taiwan, Terrestrial Atmospheric and Oceanic Sciences, Vol. 28(6), pp. 815-831
    Cornell, C. A. (1968), Engineering Seismic Risk Analysis, Bulletin of the Seismological Society of America. Vol. 58(5), pp. 1583-1606
    Der Kiureghian, A & Ang, A. H-S. (1977), A Fault-Rupture Model for Seismic Risk Analysis, Bulletin of the Seismological Society of America, Vol. 67(4), pp. 1173-1194.
    Gutenberg, B. & Richter, C. F. (1956), Magnitude and Energy of Earthquakes, Annali di Geofisica, Vol. 9(1)
    Hale, C., Abrahamson, N. & Bozorgnia, Y. (2018), Probabilistic Seismic Hazard Analysis Code Verification, Pacific Earthquake Engineering Research Center, PEER Report 2018/03, University of California, Berkeley
    Hong, L.-L. & Guo, S.-W. (1995), Nonstationary Poisson Model for Earthquake Occurrences, Bulletin of the Seismological Society of America, Vol. 85(3), pp. 814-824.
    Pu, H.-C. (2018), Spatial and Temporal Characteristics of the Microseismicity Preceding the 2016 ML 6.6 Meinong Earthquake in Southern Taiwan. Pure and Applied Geophysics, Vol. 175(6),pp.2077–2091
    Sadigh, K., Chang, C.-Y., Egan, J. A., Makdisi, F., & Youngs, R. R. (1997). Attenuation Relationships for Shallow Crustal Earthquakes Based on California Strong Motion Data. Seismological Research Letters, Vol. 68(1), pp.180–189.
    Thomas, P., Wong, I. & Abrahamson, N. (2010), Verification of Probabilistic Seismic Hazard Analysis Computer Programs, PEER Report 2010/106 , University of California, Berkeley
    Toda, S., Stein, R. S., Reasenberg, P. A., Dieterich, J. H., & Yoshida, A. (1998), Stress Transferred by the 1995 Mw=6.9 Kobe, Japan, Shock: Effect on Aftershocks and Future Earthquake Probabilities. Journal of Geophysical Research: Solid Earth, Vol. 103(B10), pp. 24543–24565.
    Wang, J. H. (1989), The Taiwan Telemetered Seismographic Network. Physics of the Earth and Planetary Interiors, Vol. 58(1), pp.9–18
    Wu, Y.-M. (2006), Seismic Quiescence before the 1999 Chi-Chi, Taiwan, Mw 7.6 Earthquake. Bulletin of the Seismological Society of America, Vol. 96(1), pp. 321–327.
    Wu, Y.-M. & L.-Y. Chiao (2006), Seismic Quiescence before the 1999 Chi-Chi, Taiwan, Mw 7.6 Earthquake. Bulletin of the Seismological Society of America, Vol. 96(1), pp. 321–327.
    Youngs, R. R. & Coppersmith, K. J. (1985), Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates, Bulletin of the Seismological Society of America, Vol. 75(4), pp. 939-964.
    鄭世楠、葉永田(1989),「西元1604年至1988年台灣地區地震目錄」,中國地質學會年會。
    葉永田、鄭世楠、辛在勤、何美儀 (1995),「臺灣地區數個地震目錄的地震定位與規模之評估(三)」,中央氣象局地震技術報告彙編,第 11 卷。
    鄭世楠、王子賓、林祖慰、江嘉豪 (2010),「台灣地區地震目錄的建置(I)(II)」,中央氣象局地震技術報告彙編,第 54、57 卷。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE