| 研究生: |
吳姿儀 Wu, Tzu-Yi |
|---|---|
| 論文名稱: |
血纖維蛋白溶酶原片段引發內皮細胞凋亡之探討 Apoptosis of Endothelial Cells Induced by Plasminogen Fragments |
| 指導教授: |
林銘德
Lin, Ming-T 蕭璦莉 shiau, Ai-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 血管靜止蛋白 、血管新生 、細胞凋亡 |
| 外文關鍵詞: | angiogenesis, angiostatin, apoptosis |
| 相關次數: | 點閱:162 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血管新生 (angiogenesis) 是只從舊有血管長出心血管的過程,通常是發生在損傷修復、組織新生以及女性的生理週期。血管新生的過程包括了內皮細胞間質的酵素性分解、內皮細胞的遷移、內皮細胞的增生,最後長出新的血管。血管新生作用是目前腫瘤發育上的一個重要的課題,不管在生理上或病理上都扮演十分重要的角色,因此抑制血管新生是癌症治療的策略之一。血管靜止蛋白 (angiostatin)是血纖維蛋白溶酶原前四個kringle的一個片段蛋白,目前發現它能非常有效的抑制血管新生。許多研究都指出不同的kringle片段具有不同的抑制血管新生能力。本實驗室之前發現三個血纖維蛋白溶酶原片段蛋白(K185-548、K1106-548與K1134-548),這三個但白對內皮細胞增生和移動的抑制效果明顯比血管靜止蛋白(K1-4)來的顯著,為了更近一步探討此三個蛋白在動物實驗中是否能抑制腫瘤生長,本實驗室利用反轉錄病毒分別將K185-548、K1106-548以及K1134-548的基因送至帶有黑色素細胞瘤的小鼠腫瘤上,並觀察腫瘤大小的差異,實驗結果發現施以此三個片段基因處理的小鼠腫瘤體積比對照組小,尤其是K185-548。以血纖維蛋白溶酶原片段處理牛副動脈內皮細胞(CPAE)後,發現這些貼附的細胞開始走向細胞凋亡(apoptosis; anoikis),並且觀察到caspase-8、-9、-3與-2的活化,以及cytochrome c從粒線體釋放至細胞質中。然而,我們卻發現要大量的抑制劑才能抑制細胞走向細胞凋亡的現象。另一方面,由於這些血纖維蛋白溶酶原是透過integrin與細胞結合。在許多不同的細胞株中,FAK的磷酸化會造成細胞內很多訊號分子的活化,因此我們推測血纖維蛋白溶酶原所引發的FAK磷酸化很有可能與細胞經蛋白處理後造成其失去與ECM物質之間的作用力有關。另一方面,我們也發現細胞內調控蛋白合成的分子Akt,其磷酸化的程度也因為受到K185-548的調控而下降。
Angiogenesis, formation of new blood vessels from existing endothelium, occurs during wound repair, organ regeneration and menstrual cycle. The process of angiogenesis consists of basement membrane degradation, migration and proliferation of endothelial cell. It is accepted that tumor growth and metastasis depend on angiogenesis, so that the anti-angiogenic strategies have been applied for cancer therapy. Angiostatin, a kringle-containing fragment of plasminogen, is a potent inhibitor of angiogenesis. Many studies demonstrated that individual or multiple kringle fragments of angiostatin had different inhibitory activities on angiogenesis. Studies in our laboratory found that three plasminogen fragments, K185-548, K1106-548 and K1134-548, had higher inhibitory effect on proliferation of endothelial cells and migration than K1-4. In vitro assays revealed that three fragments acted as a potent inhibitor of endothelial cells. To study if they can also inhibit tumor growth in vivo, transient transfections of retroviral vectors that contained these fragments were performed on 293T cells by calcium phosphate method. The animal experiment showed that retroviral vectors bearing the three different plasminogen fragments could reduce the tumor volume of melanoma-bearing mice, especially K185-548. Endothelial cells (CPAE) were also shown to undergo apoptosis in response to plasminogen fragments. Caspase-8, -9, -3, and -2 were activated and cytosolic levels of cytochrome c was increased. However, we found that cells underwent apoptosis even treated with Z-DQMD-FMK (caspase-3 inhibitor). On the other hand, CPAE cells adhered to plasminogen fragments in an integrin-dependent manner. Phosphorylation of FAK, which leads to the activation of various signaling molecules, was reduced by plasminogen fragments, suggesting that dephosphorylatin of FAK may contribute to loss of focal adhesions and cell-matrix interactions.
1. Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, and Kalluri R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by �v�3 and �5�1 integrins. Proc Natl Acad Sci USA, 100: 4766-4771, 2003.
2. Galaup A, Opolon P, Bouquet C, Li H, Opolon D, Bissery MC, Tursz T, Perricaudet M, and Griscelli F. Combined effects of docetaxel and angiostatin gene therapy in prostate tumor model. Mol Ther, 7: 731-740, 2003.
3. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol, 11: 255-60, 1999.
4. Schwartz BR, Karsan A, Bombeli T, and Harlan JM. A novel �1 integrin-dependent mechanism of leukocyte adherence to apoptotic cells. J Immunol, 162: 4842-4848, 1999.
5. Van de Water Bob, Nagelkerke JF, and Stevens JL. Dephosphorylation of focal adhesion kinase (FAK) and loss of focal contacts precede caspase-mediated cleavage of FAK during apoptosis in renal epithelial cells. J Biol Chem, 274: 13328-13337, 1999.
6. Levkau B, Herren B, Koyama H, Ross R, and Raines EW. Caspase-mediated cleavage of focal adhesion kinase pp125FAK and disassembly of focal adhesions in human endothelial cell apoptosis. J Exp Med, 187: 579-586, 1998.
7. Troyanovsky B, Levchenko T, Månsson G.. Angiomotin: An angiostatin binding protein That regulates endothelial cell migration and tube formation. J Cell Biol, 152: 1247-1254, 2001.
8. Eliceiri BP and Cheresh DA. The role of �v integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest, 103: 1227-1230, 1999.
9. Zetter BR., PhD. Angiogenesis and tumor metastasis. Annu Rev Med, 49: 407-424, 1998.
10. Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta, 1366: 139-49, 1998.
11. Yu DH, Qu CK, Henegariu O, Lu X, and Feng GS. Protein-tyrosine phosphatase shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem, 273: 21125-21131, 1998.
12. Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY and Stetler-Stevenson WG.. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell, 114:171-180, 2003.
13. Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell, 88: 801-10, 1997.
14. Hanahan D and Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86:353-364, 1996.
15. Harrington EO, Smeglin A, Newton J, Ballard G, and Rounds S. Protein tyrosine phosphatase-dependent proteolysis of focal adhesion complexes in endothelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol, 280: L342-L353, 2001.
16. Chavakis E and Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol, 22: 887-893, 2002.
17. Hannon GJ, Casso D, and Beach D. KAP : a dual specificity phosphatase that interacts with cyclin-dependent kinases. Proc Natl Acad Sci USA, 91: 1731-1735, 1994.
18. Chen HC and Guan JL. Association of Focal Adhesion Kinase with its Potential Substrate Phosphatidylinositol 3-Kinase. Proc Natl Acad Sci USA, 91: 10148-10152, 1994.
19. Ma HI, Lin SZ, Chiang YH, J Li, Chen SL, Tsao YP, Xiao X. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther. 9: 2-11, 2002.
20. Hanford HA, Wong CA, Kassan H, Cundiff DL, Chandel N, Underwood S, Mitchell CA, and Soff GA. Angiostatin4.5-mediated apoptosis of vascular endothelial cells. Cancer Res, 63: 4275-4280, 2003.
21. Rathmell JC and Thompson CB. The central effectors of cell death in the immune system. Annu Rev Immunol, 17: 781-828, 1999.
22. Geiger JH and Cnudde SE. What the structure of angiostatin may tell us about its mechanism of action. J Thromb Haemost, 2: 23-34, 2004.
23. Jiang L, Jha V, Dhanabal M, Sukhatme VP, Alper SL. Intracellular Ca(2+) signaling in endothelial cells by the angiogenesis inhibitors endostatin and angiostatin. Am J Physiol Cell Physiol, 280: C1140-50, 2001.
24. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, and Orrenius S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem, 277: 29803-29809, 2002.
25. Folkman J. Role of angiogenesis in tumor growth and metastasis. Seminar in Oncology, 28:15-18, 2002.
26. Harder KW, Moller NPH, Peacock JW, and Jirik FR. Protein-tyrosine phosphatase � regulates src family kinases and alters cell-substratum adhesion. J Biol Chem, 273: 31890-31900, 1998.
27. Zimmermann KC, Bonzon C and Green DR. The machinery of programmed cell death. Pharmacol Ther, 92: 57-70, 2001.
28. Lena CW, Welsh M, Ito N, Bela AA, Soker S, Zetter B, O'Reilly M, and Folkman J. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA, 95: 5579-5583, 1998.
29. Meerovitch K, Bergeron F, Leblond L, Grouix B, Poirier C, Bubenik M, Chan L, Gourdeau H, Bowlin T and Attardo G. A novel RGD antagonist that targets both �v�3 and �5�1 induces apoptosis of angiogenic endothelial cells on type I collagen. Vascul Pharmacol, 40: 77-89, 2003.
30. Cary LA and Guan JL. Focal adhesion kinase in integrin-mediated signaling. Front Biosci, 4: D102-113, 1999.
31. Lipfert L, Haimovich B, Schaller MD, Cobb BS, Parsons JT, Brugge JS. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J Cell Biol,119: 905-12, 1992.
32. Rehn M, Veikkola T, Eola KV, Nakamura H, Ilmonen M, Lombardo CR, Pihlajaniemi T, Alitalo K, and Vuori K. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA, 98: 1024-1029, 2001.
33. Imajoh M, Sugiura H, Oshima SI. Morphological changes contribute to apoptotic cell death and are affected by caspase-3 and caspase-6 inhibitors during red sea bream iridovirus permissive replication. Virology, 322: 220-230, 2004.
34. Pollman MJ, Naumovski L, and Gibbons GH. Vascular cell apoptosis: cell type–specific modulation by transforming growth factor-�1 in endothelial cells versus smooth muscle cells. Circulation, 99: 2019-2026, 1999.
35. O'Reilly M, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH and Folkman J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma. Cell, 79: 315-328, 1996.
36. Mountain A. Gene therapy: the first decade. Trends Biotechnol, 18: 119-128, 2000.
37. Soff GA. Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev, 19: 97-107, 2000.
38. Gupta N, Nodzenski E, Khodarev, Nikolai N, Yu J, Khorasani L, Beckett MA, Kufe DW and Weichselbaum RR. Angiostatin effects on endothelial cells mediated by ceramide and RhoA. EMBO reports, 2: 536-540, 2001.
39. Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene, 17: 3237-45, 1998.
40. Lassus P, Ximena OA, and Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science, 297: 1352-1354, 2002.
41. Stathakis P, Fitzgerald M, Matthias LJ, Chesterman CN, and Hogg PJ. Generation of angiostatin by reduction and proteolysis of plasmin. CATALYSIS BY A PLASMIN REDUCTASE SECRETED BY CULTURED CELLS. J Biol Chem, 272: 20641-20645, 1997.
42. Lucas R, Holmgren L, Garcia I, Jimenez B, Mandriota SJ, Borlat F, Sim BKL, Wu Z, Grau GE, Shing Y, Soff GA, Bouck N, and Pepper MS. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood, 92: 4730-4741, 1998.
43. Chamond RR, Añón JC, Aguilary CM, Pasadas FG. Apoptosis and disease. Nature Rev Mol Cell Biol, 2: 545-550, 2001.
44. Kanner SB, Reynolds AB, Vines RR, and Parsons JT. Monoclonal Antibodies to Individual Tyrosine-Phosphorylated Protein Substrates of Oncogene-Encoded Tyrosine Kinases. Proc Natl Acad Sci USA, 87: 3328-3332, 1990.
45. Sharma MR, Tuszynski GP, Sharma MC. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. J Cell Biochem, 91:398-409, 2004.
46. Kanda S, Bianca TJ, Klint P, Dixelius J, Rubin K, and Lena CW. Signaling via fibroblast growth factor receptor-1 is dependent on extracellular matrix in capillary endothelial cell differentiation. Exp Cell Res, 248: 203–213, 1999.
47. Shimizu S, Tsujimoto Y. Molecular mechanism of apoptosis. Seikagaku, 70: 14-21, 1998.
48. Silletti S, Kessler T, Goldberg J, Boger DL, Cheresh DA. Disruption of matrix metalloproteinase 2 binding to integrin alpha v beta 3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc Natl Acad Sci USA., 98: 119-24, 2001.
49. Frisch SM, Vuori K, Ruoslahti E and Hui PYC. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol, 134: 793-799, 1996.
50. Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ, Enghild J, Kwaan HC, Lee F, Kramer RA, Volpert O, Bouck N, and Soff GA. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA, 94: 10868-10872, 1997.
51. Steven M Frisch and Robert A Screaton. Anoikis mechanisms. Curr Opin Cell Biol, 13: 555-562, 2001. 52.
53. Tarui T, Miles LA, and Takada Y. Specific interaction of angiostatin with integrin �v�3 in endothelial cells. J Biol Chem, 276: 39562-39568, 2001.
54. Tarui T, Majumdar M, Miles LA, Ruf W, and Takada Y. Plasmin-induced migration of endothelial cells. A POTENTIAL TARGET FOR THE ANTI-ANGIOGENIC ACTION OF ANGIOSTATIN. J Biol Chem, 277: 33564-33570, 2002.
55. Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, and Pizzo SV. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA, 96: 2811-2816, 1999.
56. Baron V and Schwartz M. Cell adhesion regulates ubiquitin-mediated degradation of the platelet-derived growth Factor receptor �. J Biol Chem, 275: 39318- 39323, 2000.
57. Ji WR, Castellino HJ, Chang Y, Deford ME, Gray H, Villarreal X, Kondri ME, Marti DN, Llinás M, Schaller J, Kramer RA, and Trail PA. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB J, 12:1731-1738, 1998.
58. Ji WR, Barrientos LG, Llina´s M, Gray H, Villarreal X, DeFord ME, Castellino FJ, Kramer RA, and Trail PA. Selective Inhibition by Kringle 5 of HumanPlasminogen on Endothelial Cell Migration,an Important Process in Angiogenesis. Biochem Biophys Res Commun, 247: 414-419, 1998.
59. Wu WB, Peng HC and Huang TF. Disintegrin causes proteolysis of �-catenin and apoptosis of endothelial cells: Involvement of cell-cell and cell-ECM interactions in regulating cell viability. Exp Cell Res, 286: 115-127, 2003.
60. Westlin WF. Integrins as targets of angiogenesis inhibition. The Cancer Journal, 7: 139-143, 2001.
61. Wilma PM, Kamata T, and Takada Y. Multiple discontinuous ligand-mimetic antibody binding sites define a ligand binding pocket in integrin. J Biol Chem, 275: 7795-7802, 2000.
62. Chen YH, Wu HL, Chen CK, Huang YH, Yang BC, Wu LW. Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun, 310: 804-810, 2003.
63. Guo Y, Srinivasula SM, Druilhe A, Teresa FA, and Alnemri ES. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem, 277: 13430-13437, 2002.
64. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, and Kalluri R. Tumstatin, an Endothelial Cell-Specific Inhibitor of Protein Synthesis. Science, 295: 140-143, 2002.
65. Zhang XP, Kamata T, Yokoyama K, Wilma PW, and Takada Y. Specific interaction of the recombinant disintegrin-like domain of MDC-15 (Metargidin, ADAM-15) with integrin �v�3. J Biol Chem, 273: 7345-7350, 1998.