簡易檢索 / 詳目顯示

研究生: 庄美志
Chong, Mei-Chi
論文名稱: 以鋅和還原石墨烯改質二氧化鈦於可見光下降解空氣污染物二甲基硫之研究
ZnxTiO2/rGO nanocomposites for photocatalytic degradation of dimethyl sulfide (DMS) by visible-light irradiation
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 162
中文關鍵詞: 光催化劑二氧化鈦含硫揮發性有機化合物表面氧空位
外文關鍵詞: Photocatalysts, Titanium dioxide, sulphide-containing volatile organic compounds, surface oxygen vacancy
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 揮發性有機化合物(VOCs)是造成空氣污染的主要原因之一,並可能導致霧霾、臭氧層損耗和温室效應等問題,其主要排放來自石油、化工、溶劑工業及自然界中生物質的降解等。在眾多類別的揮發性有機化合物中,含硫揮發性有機化合物被認為是日常生活中臭味的主要源頭。由於此類揮發性有機化合物對日常生活品質、人體健康和環境皆有危害,多項相關法項已被訂定用以監管和限制其排放和室內濃度。此外,硫中毒導致的催化劑老化問題一直是催化領域上的一大難題。因此,尋找合適的技術控制並減少含硫揮發性有機化合物的排放是現今重要的議題。
    光催化是一種有效、合乎經濟效益且十分具前景的去除揮發性有機化合物的技術,特別適用於低濃度的室內污染物,這是由於光催化劑由相對便宜的半導體組成,可在常温常壓下進行反應,且適用於各種不同類型的有機化合物。在過去的十多年間,二氧化鈦一直被視為十分具有潛力的光催化劑而被廣泛研究,雖然二氧化鈦具有安全無害、低成本、穩定和易製備等優點,但其快速的電子空穴對再結合率和寬能帶間隙所導致的低效光利用率大大限制其光催化能力和實際應用。眾多研究表示金屬或非金屬摻雜可以有效地降低二氧化鈦的能隙和電子空穴再結合率,從而提高其在可見光下的活性。然而,由於摻雜可能造成兩種截然相反的效果,摻雜物的種類和數量都需要經過仔細的研究和分析。在理想的摻雜條件下,摻雜分子可提高電子和空穴的分離;當摻雜量過多時,摻雜分子則會造成大量的體相缺陷並成為電子空穴再結合的位點,導致活性降低。
    本研究通過溶劑熱法製備二氧化鈦,同時利用還原氧化石墨烯和鋅改質以提高其在可見光條件下的光催化能力,二甲基硫用於模擬含硫揮發性有機化合物作為本研究中的降解目標。本研究闡釋了利用還原氧化石墨烯和鋅改質後二氧化鈦的相關材料表徴和動力學研究。XRD數據表明所製得的光催化劑主要由銳鈦礦和板鈦礦兩相組成。二氧化鈦成功摻入還原氧化石墨烯和鋅,且鋅主要以氧化鋅的形態生長在二氧化鈦晶界或團簇的邊界中;通過SEM和TEM圖譜可以看到光催化劑的顆粒大小約為10 nm;BET結果顯示加入還原氧化石墨烯和鋅後材料的比表面積有所增加;TGA和FTIR圖譜表示0.1rGO/Zn1TiO2 上具有較少的吸附水分子,這是由於其表面具有較多的氧空位所致;拉曼數據進一步證明了板鈦礦和還原氧化石墨烯的存在,以及通過鋅改質後出現的表面氧空位;UV-Vis光譜顯示加入還原氧化石墨烯和鋅後二氧化鈦的能隙有所降低;通過XPS數據可以對材料表面的價態進行半定量分析,Ti3+和表面氧空位皆隨鋅含量的增加而增加;PL圖譜表現出在0.1rGO/Zn1TiO2 中具有較多的電子遷移,這是由於結構缺陷(包括氧空位和Ti3+)在禁帶間形成的副能帶所導致。
    表面氧空位和Ti3+對光催化性能有着十分重要的影響,其可在價帶和導帶間形成的副能帶降低了把電子從價帶激活至導帶所需的能量,藉此提高了二氧化鈦在可見光下的利用率和催化活性。此外,表面氧空位也提高了催化劑的氧吸附能力,亦可以作為反應物和超氧活性基的反應位點,從而提高光催化效率。

    Volatile organic compounds (VOC) is one of the major contributors of air pollution which may cause the formation of urban smog, stratospheric ozone depletion and greenhouse effects. The main emission of VOCs is from petroleum refineries, chemical industries, solvent processes and decomposition of biosphere and biomass, etc. Among different classifications of VOCs, sulphur-containing VOCs (SVOCs) are always considered as the major resources of malodor and toxic. Owing to its influence on life quality, human health and environment, many stringent regulations are imposed to restrict the emission and indoor concentration of VOCs. Besides, sulphur poisoning is known as a difficult problem leading to rapid deactivation in the catalysis field. Therefore, it is necessary to control and reduce the emission of SVOCs.
    Photocatalysis is an efficient, promising and cost-effective technique to remove VOCs, especially for low concentration indoor pollutants. These behaviors are because photocatalysis can be operated at ambient temperature and pressure and is suitable for wide range of pollutants by using inexpensive semiconductors. TiO2 has received considerable attention for its well potential as photocatalysts in the past few decades. Although TiO2 is safe, relatively low-cost, stability, ease of synthesis and nontoxicity, the high recombination rate of photoinduced carriers and low light utilization given by its wide band gap limited its photocatalytic activity and practical application. Numerous researches reported metal or non-metal doping can extend the light adsorption of TiO2 to visible light by reducing band gap and decreasing electron and hole recombination. However, the type and amount of dopant require detailed study on accounting of it two contrasting effect. At the optimal amount of dopant, it acts as charge carrier bridge and improve the separation of e--h+, remarkably increasing the photocatalytic efficiency. Beyond the optimal amount, dopant induce immoderate bulk defects and serve as recombination center, leads to decreasing the photocatalytic efficiency.
    In this study, TiO2 are modified by rGO and Zn via solvothemal in order to improve its photocatalytic efficiency under visible light irradiation. Dimethyl sulfide (DMS) are chosen as simulated pollutants of SVOCs. A series of characterization and kinetic study were comprehensively presented. XRD results show that the synthesized photocatalysts are mainly consisted of anatase and brookite phase. TiO2 are successfully fabricated with rGO and Zn are grown on the boundary of TiO2 agglomeration in the form of ZnO. SEM and TEM images display the average particle sizes range are 10 nm. BET data indicate the specific surface area increases by the addition of rGO and Zn. TGA and FTIR reveal that 0.1rGO/Zn1TiO2 has less adsorbed water molecules on the surface because of the higher content of surface oxygen vacancy. Raman spectra further evidence that the presence of brookite phase and rGO and the advent of surface oxygen vacancy owing to the modification of Zn. UV-Vis spectra demonstrate the band gap of TiO2 slightly decreases due to the addition of rGO and Zn. XPS results give quantitative analysis of surface chemical state. The amount of oxygen defects and Ti3+ are increased with the increasing amount of Zn. PL spectra illustrate more electron transition are provoked in 0.1rGO/Zn1TiO2, in the results of the advent of deep level band within the forbidden band caused by structural defects (including surface oxygen vacancy and Ti3+).
    Surface oxygen vacancy and Ti3+ are crucial impact factors of photocatalytic performance. The formation of deep level band between VB and CB significantly reduce the energy required for excitation of electron from VB to CB, resulting in higher light utilization and remarkably promoting the photocatalytic activity under visible light. Besides, surface oxygen vacancies can enhance the adsorption of exoteric oxygen and act as active sites for the reaction of superoxide and pollutants, therefore, increasing the photocatalytic efficiency.

    CONTENT 摘要 I Abstract III 致謝 V Content VI List of Table IX List of Figure XI CHAPTER 1 Introduction 1 1-1 Motivation 1 1-2 Objectives 3 CHAPTER 2 Literature survey 5 2-1 Introduction of air pollutants 5 2-1.1 Volatile Organic Compounds (VOCs) 6 2-1.2 Chlorinated Volatile Organic Compounds (CVOCs) 8 2-1.3 Sulphide-containing Volatile Organic Compounds (SVOCs) 9 2-1.4 Dimethyl sulfide 10 2-2 Control method of VOCs 13 2-3 Photocatalysis 17 2-3.1 Photocatalysts 17 2-3.2 Mechanism of photocatalysis 18 2-3.3 Impact factors of photocatalytic activity 21 2-3.4 Synthesis method of photocatalysts 22 2-4 TiO2 for photocatalysis 26 2-4.1 TiO2 26 2-4.2 Modification of TiO2 27 2-5 Heterojunction semiconductor 29 2-6 Graphene-based photocatalysts 30 2-7 Chemical reaction mechanism 33 2-7.1 Impact factor of photocatalytic performance 34 2-7.2 Plug flow reactor 36 2-8 Catalytic kinetic model 39 2-9 Arrhenius equation 43 2-10 Van’t Hoff equation 43 CHAPTER 3 Material and methods 45 3-1 Research scope 45 3-2 Experimental materials and equipment 46 3-3 Photocatalysts Preparation 48 3-3.1 Synthesis of reduced graphene oxide 48 3-3.2 Synthesis of Photocatalysts 51 3-3.3 Preparation of immobilized photocatalyst film 55 3-4 Photocatalytic reactor 56 3-4.1 The stability and photolysis of simulated DMS gas system 57 3-4.2 Calibration curve 59 3-5 Photocatalysts characterization 59 3-5.1 Thermogravimetric / differential thermal analysis (TG/DTA) 59 3-5.2 X-ray powder diffraction spectroscopy (XRD) 60 3-5.3 Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) 60 3-5.4 Transmission electron microscopy (TEM) 60 3-5.5 Fourier transform infrared spectroscopy (FTIR) 61 3-5.6 Diffuse reflectance spectra (DRS) 61 3-5.7 X-ray photoelectron spectroscopy (XPS) 62 3-5.8 Brunauer-Emmett-Teller (BET) surface area analysis 62 3-5.9 Raman spectroscopy 65 3-5.10 Photoluminescence (PL) 65 3-5.11 Inductively coupled plasma optical microscopy (ICP-OES) 65 CHAPTER 4 Results and Discussion 66 4-1 Photocatalysts Characterization 66 4-1.1 XRD 66 4-1.2 ICP-OES 69 4-1.3 SEM Image 70 4-1.4 TEM Image 73 4-1.5 BET 80 4-1.6 TGA 83 4-1.7 FTIR 87 4-1.8 Raman 89 4-1.9 UV–Vis spectroscopy 93 4-1.10 XPS 96 4-1.11 Photoluminescence 109 4-2 Photocatalytic activity tests 112 4-2.1 Photocatalytic performance of various photocatalysts 112 4-2.2 Photocatalytic performance under various conditions 115 4-3 Mechanism of photocatalytic reaction 116 4-3.1 Intermediate study by FTIR 116 4-3.2 Mineralization study 119 4-3.3 Reaction pathway 120 4-4 Parameters Test 125 4-4.1 Effect of initial concentration 125 4-4.2 Effect of temperature 127 4-4.3 Effect of retention time 129 4-4.4 Effect of humidity 131 4-5 Kinetic study 134 CHAPTER 5 Conclusion and suggestion 140 5-1 Conclusion 140 5-2 Suggestion 141 Reference 142   LIST OF TABLE Table 2 1 Diverse definition of VOCs in different countries/ organizations 7 Table 2 2 Physical properties of CVOCs and relevant regulations. a 8 Table 2 3 Physical properties of SVOCs and relevant regulations. a 9 Table 2 4 Material safety data sheet of dimethyl sufides. 12 Table 2 5 Characteristics, advantages and limitation of the technologies for VOC elimination (Referred from (Delhoménie et al., 2005; Huang et al., 2016a; Kumar et al., 2011b; Sudnick et al., 1994; Thevenet et al., 2014)). 15 Table 2 6 The benefits and drawbacks comparison between a variety of synthesis routine (Referred from (Asim et al., 2014; Athar, 2015; Carter et al., 2013; Grabowska et al., 2018; Makhlouf, 2011; Mu et al., 2019; Najafpour et al., 2007; Rane et al., 2018; Riikonen, 2016; Zhang et al., 2016b)). 24 Table 2 7 The structural parameters and band gap Four main polymorphs of TiO2 (Referred from (Lance, 2018; Ma et al., 2014)). 27 Table 2 8 The reaction rate expressions in various reaction models. 42 Table 3 1 The contents of dopants and doping ratio. 52 Table 4 1 Structural properties of bare TiO2 and rGO/Zn co-modified TiO2. 69 Table 4 2 Estimation of Zn and Ti content by ICP-OES. 69 Table 4 3 BET specific surface area and porous properties of various photocatalysts. 80 Table 4 4 Intensity ratio of D/G and 2D/G bands in graphite, its derivative compounds and 0.1rGO/ZnXTiO2. 91 Table 4 5 The position and full width at half maximum (FWHM) of Raman Eg mode of anatase. 93 Table 4 6 Band gap and Band edge wavelength of various photocatalysts. 94 Table 4 7 XPS results for the Ti 2p region: binding energy, full widths at half-maximum, area and proportion. 103 Table 4 8 XPS results for the O 1s region: binding energy, full widths at half-maximum, area and proportion. 106 Table 4 9 The conversion and reaction rate of DMS by 0.1rGO/Zn1TiO2 under various initial DMS concentrations. 126 Table 4 10 The conversion and reaction rate of DMS by 0.1rGO/Zn1TiO2 at various reaction temperatures. 128 Table 4 11 The conversion and reaction rate of DMS by 0.1rGO/Zn1TiO2 with various retention times. 130 Table 4 12 The conversion and reaction rate of DMS by 0.1rGO/Zn1TiO2 with various relative humidities. 132 Table 4 13 Parameters design and the experimental reaction rate of kinetic study. 135 Table 4 14 Results of kinetic model fitting: reaction rate constant (k), adsorption equilibrium constants of DMS and water (KA, KW), and R2. 136 Table 4 15 Fitting results of parameters in Arrhenius equation and Van’t Hoff equation. 139   LIST OF FIGURE Figure 1 1 Research procedure flow charts. 4 Figure 2 1 Overview of VOC chemistry in nature (Adapted from (Vandenbroucke, 2015)). 6 Figure 2 2 Atomic structure of DMS. 11 Figure 2 3 VOCs control technology for scope of application (Adapted from (Revah et al., 2005; Shareefdeen, 2005)). 14 Figure 2 4 Electrochemical potentials of the band edges of some semiconductors (interfaced with a pH 7 electrolyte solution) (Referred from (Belver et al., 2019; Di Paola et al., 2013; Tay et al., 2016; Yao, 2018)). 17 Figure 2 5 Thermodynamic requirements for a) photocatalytic water splitting, b) degradation of pollutants and c) CO2 reduction over a given semiconductor. OER; oxygen evolution reaction, HER; hydrogen evolution reaction, WOR; water oxidation to radicals of hydroxyl(ˑOH), ORR; oxygen reduction reaction and CRR: CO2 reduction reaction. 19 Figure 2 6 Schematic illustration of an irradiated photocatalyst particle (Reprinted from (Belver et al., 2019)). 19 Figure 2 7 Photoinduced reactions in TiO2 photocatalysis and the corresponding time scales (Reprinted from (Schneider et al., 2014)). 21 Figure 2 8 Crystalline structures of TiO2 in different phase: (a) anatase, (b) rutile, (c) brookite and (d) TiO2 (B) (Reprinted from (Ma et al., 2014)). 27 Figure 2 9 A schematic of (a) Schottky junction, (b) p-n heterojunction between two semiconductors, (c) p-n heterojunction with Ohmic Layer, and (d) bulk heterojunction (Reprinted from (Jang et al., 2012)). 30 Figure 2 10 Different structure of graphite family. 32 Figure 2 11 Steps in a heterogeneos catalytic reaction (Reprinted from (Fogler, 2006) Chapter 9). 33 Figure 2 12 Plug flow reactor. 39 Figure 3 1 Flow chart of photocatalytic research method. 46 Figure 3 2 Schematic of preparation of graphite oxide. 49 Figure 3 3 Flowchart of preparation of graphite oxide. 50 Figure 3 4 Flowchart of preparation of graphene oxide and reduced graphene oxide. 51 Figure 3 5 Schematic of preparation of photocatalysts. 53 Figure 3 6 Flowchart of preparation of photocatalysts. 54 Figure 3 7 Graphical illustration for the synthesis of rGO/ZnxTiO2 nanocomposite. (Referred to (Wang et al., 2013a)). 55 Figure 3 8 The photocatalytic experiments structure. 57 Figure 3 9 Photocatalytic reactor 57 Figure 3 10 The optical degradation of DMS under visible light. 58 Figure 3 11 The photocatalytic performance of TiO2 under UV-Vis and visible light (with filter) only irradiation. 58 Figure 3 12 The calibration curve of DMS concentration for GC-MS. 59 Figure 3 13 The IUPAC classification of adsorption isotherms (Cited from (Thommes et al., 2015)). 63 Figure 3 14 Classification of hysteresis loops and their related pore shapes (Adapted from (Thommes et al., 2015)). 64 Figure 4 1 XRD Pattern of graphite and its derivative compounds. 67 Figure 4 2 XRD Pattern of bare TiO2 and rGO/Zn co-modified TiO2. 68 Figure 4 3 SEM images of (a-b) graphite flake, (c-d) graphite oxide, (e-f) GO, (g-h) rGO. 71 Figure 4 4 SEM images of bare TiO2 and rGO/Zn co-modified TiO2. 72 Figure 4 5 TEM micrograph of GO: (a) magnification × 3,000, (b) × 25,000, (c) × 25,000 and (d) SAED pattern. 74 Figure 4 6 TEM micrograph of rGO: (a) magnification × 10,000, (b) × 50,000, (c) × 100,000 and (d) SAED pattern. 75 Figure 4 7 TEM micrograph of bare TiO2: (a) magnification × 50,000, (b) × 100,000, (c) × 150,000; High-resolution TEM micrograph of TiO2: (d-e) magnification × 800,000 and (f) SAED pattern. 76 Figure 4 8 TEM micrograph of 0.1rGO/TiO2: (a-b) magnification × 100,000, (c) × 150,000; High-resolution TEM micrograph of 0.1rGO/TiO2: (d) magnification × 500,000, (e) × 800,000 and (f) Fast Fourier transform (FFT) generated SAED pattern. 77 Figure 4 9 TEM micrograph of 0.1rGO/Zn1TiO2: (a) magnification × 100,000, (b-c) × 150,000; High-resolution TEM micrograph of 0.1rGO/Zn1TiO2: (d-e) magnification × 500,000 and (f) Fast Fourier transform (FFT) generated SAED pattern. 78 Figure 4 10 TEM micrograph of 0.1rGO/Zn5TiO2: (a) magnification × 150,000, (b) × 100,000, (c) × 150,000; High-resolution TEM micrograph of 0.1rGO/Zn5TiO2: (d-e) magnification × 500,000 and (f) SAED pattern. 79 Figure 4 11 Nitrogen adsorption-desorption curves of various photocatalysts. 81 Figure 4 12 Pore size ratio of various photocatalysts. 82 Figure 4 13 The size distribution of pores for various photocatalysts. 82 Figure 4 14 DSC-TGA curves of graphite and its derivative compounds. 84 Figure 4 15 DSC-TGA curves of TiO2, 0.1rGO/TiO2 and 0.1rGO/Zn0.01TiO2. 85 Figure 4 16 DSC-TGA curves of 0.1rGO/Zn0.1TiO2, 0.1rGO/Zn1TiO2 and 0.1rGO/Zn5TiO2. 86 Figure 4 17 FTIR spectra of graphite and its derivative compounds. 88 Figure 4 18 FTIR spectra of bare TiO2 and rGO/Zn co-modified TiO2. 89 Figure 4 19 Raman spectra of graphite and its derivative compounds. 90 Figure 4 20 Raman spectra of bare TiO2 and rGO/Zn co-modified TiO2. 92 Figure 4 21 UV-Vis absorption spectra of bare TiO2 and rGO/Zn co-modified TiO2. 94 Figure 4 22 Band gap energy of bare TiO2 and rGO/Zn co-modified TiO2 from UV-Vis absorption spectra. 95 Figure 4 23 Diffuse reflectance UV-Vis spectra of bare TiO2 and rGO/Zn co-modified TiO2. 95 Figure 4 24 Band gap energy of bare TiO2 and rGO/Zn co-modified TiO2 from Diffuse reflectance UV-Vis spectra. 96 Figure 4 25 High-resolution XPS spectra in C 1s region of graphite and its derivative compounds. 98 Figure 4 26 High-resolution XPS spectra in O 1s region of graphite and its derivative compounds. 99 Figure 4 27 High-resolution XPS survey spectra of graphite and its derivative compounds. 100 Figure 4 28 High-resolution XPS survey spectra of (a) bare TiO2, (b) 0.1rGO/TiO2, (c) 0.1rGO/Zn0.01TiO2, (d) 0.1rGO/Zn0.1TiO2, (e) 0.1rGO/Zn1TiO2 and , (c) 0.1rGO/Zn5TiO2. 102 Figure 4 29 High-resolution XPS survey spectra in Zn 2p region of 0.1rGO/Zn1TiO2 and 0.1rGO/Zn5TiO2. 102 Figure 4 30 High-resolution XPS survey spectra in Ti 2p region of bare TiO2 and rGO/Zn co-modified TiO2. 104 Figure 4 31 High-resolution XPS survey spectra in O1s region of bare TiO2 and rGO/Zn co-modified TiO2. 107 Figure 4 32 High-resolution XPS survey spectra in C1s region of bare TiO2 and rGO/Zn co-modified TiO2. 108 Figure 4 33 Photoluminescence spectra of bare TiO2 and rGO/Zn co-modified TiO2. 111 Figure 4 34 Schematic diagram of the band structure for different PL emission mechanisms (Referred to (Aguilar et al., 2017; Lin et al., 2014a; Liqiang et al., 2004)) 111 Figure 4 35 Photocatalytic activity of gaseous DMS over bare TiO2 and rGO/Zn co-modified TiO2 under visible light irradiation. 113 Figure 4 36 Conversion and reaction rates of DMS by various photocatalysts under room temperature, 60% relative humidity and RT = 30 s. 114 Figure 4 37 Schematic of the charge migration and separation on rGO/Zn co-modified TiO2. 114 Figure 4 38 Photocatalytic activity of gaseous DMS over 0.1rGO/Zn1TiO2 under various conditions with visible light irradiation (conditions: initial DMS concentration 2 ppm, 25°C and RT = 30 s). 115 Figure 4 39 The FTIR spectra of the exhaust gas by photocatalytic degradation process with 4 ppm DMS, 60% relative humidity, and 30 s retention time at 25 °C. 117 Figure 4 40 The FTIR spectra of the exhaust gas by photocatalytic degradation process with 2 ppm DMS, 60% relative humidity (N2 only), and 30 s retention time at 25 °C. 118 Figure 4 41 The FTIR spectra of the exhaust gas by photocatalytic degradation process with 2 ppm DMS, 0% relative humidity, and 30 s retention time at 25 °C. 118 Figure 4 42 The conversion and mineralization of DMS by 0.1rGO/Zn1TiO2 under various conditions. 120 Figure 4 43 Proposed pathway of photocatalytic degradation of DMS by rGO/Zn co-modified TiO2 under visible light irradiation. 123 Figure 4 44 Photocatalytic activity of DMS by 0.1rGO/Zn1TiO2 at various initial DMS concentrations. 126 Figure 4 45 Conversion and reaction rate of DMS by 0.1rGO/Zn1TiO2 at various concentrations under room temperature, 60% relative humidity, and RT = 30 s. 127 Figure 4 46 Photocatalytic conversion of DMS by 0.1rGO/Zn1TiO2 at various reaction temperatures. 128 Figure 4 47 Conversion and reaction rate of DMS by 0.1rGO/Zn1TiO2 at various reaction temperatures with 2 ppm initial DMS concentration, 60% relative humidity, and RT = 30 s. 129 Figure 4 48 Photocatalytic conversion of DMS over 0.1rGO/Zn1TiO2 with various retention times. 130 Figure 4 49 Conversion and reaction rate of DMS by 0.1rGO/Zn1TiO2 at various retention times with 2 ppm initial DMS concentration, 60% relative humidity, and temperature = 25°C. 131 Figure 4 50 Photocatalytic conversion of DMS by 0.1rGO/Zn1TiO2 at various relative humidities. 133 Figure 4 51 Conversion and reaction rate of DMS by 0.1rGO/Zn1TiO2 at various relative humidities with 2 ppm initial DMS concentration, 30 s retention time, and temperature = 25°C. 133 Figure 4 52 The predicted reaction rates from model 4 and the experimental values at (a) 298 K, (b) 308 K, and (c) 318 K. 137 Figure 4 53 Plot comparing the experimental reaction rates with the predicted reaction rates at various temperatures. 138 Figure 4 54 Regression of (a) reaction rate constant k with 1/T by Arrhenius equation, (b) adsorption equilibrium constant of DMS KA and (c) adsorption equilibrium constant of water KW with 1/T by Van’t Hoff equation. 138

    Abedi, K., Ghorbani-Shahna, F., Jaleh, B., Bahrami, A., Yarahmadi, R., Haddadi, R., & Gandomi, M. (2015). Decomposition of chlorinated volatile organic compounds (CVOCs) using NTP coupled with TiO2/GAC, ZnO/GAC, and TiO2–ZnO/GAC in a plasma-assisted catalysis system. Journal of Electrostatics, 73, 80-88
    Achour, A., Islam, M., Vizireanu, S., Ahmad, I., Akram, M. A., Saeed, K., Dinescu, G., & Pireaux, J. J. (2019). Orange/Red Photoluminescence Enhancement Upon SF6 Plasma Treatment of Vertically Aligned ZnO Nanorods. Nanomaterials (Basel), 9(5)
    Aguilar, G. V., Fonseca, M. R. J., Ramírez, Á. M., & Gracia, A. G. J. (2017). Photoluminescence Studies on ZnO Thin Films Obtained by Sol-Gel Method. Recent Applications in Sol-Gel Synthesis, 195
    Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., & Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv., 4(70), 37003-37026
    Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., & Atieh, M. A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45(11), 14439-14448
    Al-Rasheed, R., & Cardin, D. J. (2003). Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH, and air-flow. Chemosphere, 51(9), 925-933
    Alam, S. N., Sharma, N., & Kumar, L. (2017). Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*. Graphene, 06(01), 1-18
    Alaoui, O. T., Herissan, A., Le Quoc, C., el Mehdi Zekri, M., Sorgues, S., Remita, H., & Colbeau-Justin, C. (2012). Elaboration, charge-carrier lifetimes and activity of Pd-TiO2 photocatalysts obtained by gamma radiolysis. Journal of Photochemistry and Photobiology A: Chemistry, 242, 34-43
    Albrbar, A. J., Djokić, V., Bjelajac, A., Kovač, J., Ćirković, J., Mitrić, M., Janaćković, D., & Petrović, R. (2016). Visible-light active mesoporous, nanocrystalline N, S-doped and co-doped titania photocatalysts synthesized by non-hydrolytic sol-gel route. Ceramics International, 42(15), 16718-16728
    Apopei, P., Catrinescu, C., Teodosiu, C., & Royer, S. (2014). Mixed-phase TiO2 photocatalysts: Crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents. Applied Catalysis B: Environmental, 160, 374-382
    Armenise, S., Garcia-Bordeje, E., Valverde, J., Romeo, E., & Monzón, A. (2013). A Langmuir–Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor. Physical Chemistry Chemical Physics, 15(29), 12104-12117
    Armstrong, A. R., Armstrong, G., Canales, J., & Bruce, P. G. (2004). TiO2-B nanowires. Angew Chem Int Ed Engl, 43(17), 2286-2288
    Arrhenius, S. (1889). Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für physikalische Chemie, 4(1), 96-116
    Asemi, M., & Ghanaatshoar, M. (2016). Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2. Journal of Materials Science, 52(1), 489-503
    Asim, N., Ahmadi, S., Alghoul, M., Hammadi, F., Saeedfar, K., & Sopian, K. (2014). Research and development aspects on chemical preparation techniques of photoanodes for dye sensitized solar cells. International Journal of Photoenergy, 2014
    Athar, T. (2015). Chapter 17 - Smart precursors for smart nanoparticles. In W. Ahmed & M. J. Jackson (Eds.), Emerging Nanotechnologies for Manufacturing (Second Edition) (pp. 444-538). Boston: William Andrew Publishing.
    Bai, S., Shen, X., Zhong, X., Liu, Y., Zhu, G., Xu, X., & Chen, K. (2012). One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon, 50(6), 2337-2346
    Baker, M. J., Gazi, E., Brown, M. D., Shanks, J. H., Gardner, P., & Clarke, N. W. (2008). FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer. British journal of cancer, 99(11), 1859-1866
    Bauer, T., Lunkenheimer, P., & Loidl, A. (2013). Cooperativity and the freezing of molecular motion at the glass transition. Physical review letters, 111(22), 225702
    Behnajady, M. A., & Eskandarloo, H. (2013). Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chemical Engineering Journal, 228, 1207-1213
    Belver, C., Bedia, J., Gómez-Avilés, A., Peñas-Garzón, M., & Rodriguez, J. J. (2019). Semiconductor Photocatalysis for Water Purification. In Nanoscale Materials in Water Purification (pp. 581-651).
    Bi, X., Wu, N., Zhang, C., Bai, P., Chai, Z., & Wang, X. (2018). Synergetic effect of heterojunction and doping of silver on ZnNb2O6 for superior visible-light photocatalytic activity and recyclability. Solid State Sciences, 84, 86-94
    bin MohdáYusoff, A. R. (2015). Graphene based energy devices. Nanoscale, 7(16), 6881-6882
    Binas, V., Stefanopoulos, V., Kiriakidis, G., & Papagiannakopoulos, P. (2019). Photocatalytic oxidation of gaseous benzene, toluene and xylene under UV and visible irradiation over Mn-doped TiO2 nanoparticles. Journal of Materiomics, 5(1), 56-65
    Birol, H., Maeder, T., Jacq, C., Corradini, G., Passerini, R., Fournier, Y., Straessler, S., & Ryser, P. (2005). Fabrication of LTCC Micro-fluidic Devices Using Sacrificial Carbon Layers. 2
    Bloh, J. Z. (2019). A holistic approach to model the kinetics of photocatalytic reactions. Frontiers in chemistry, 7, 128
    Bloxham, S., Eicher-Lorka, O., Jakubënas, R., & Niaura, G. (2002). Surface-enhanced Raman spectroscopy of ethanethiol adsorbed at copper electrode. Chemija, 13(4), 185-189
    Bouazza, N., Lillo-Ródenas, M., & Linares-Solano, A. (2008). Photocatalytic activity of TiO2-based materials for the oxidation of propene and benzene at low concentration in presence of humidity. Applied Catalysis B: Environmental, 84(3-4), 691-698
    Bueno-Ferrer, C., Parres-Esclapez, S., Lozano-Castelló, D., & Bueno-López, A. (2010). Relationship between surface area and crystal size of pure and doped cerium oxides. Journal of Rare Earths, 28(5), 647-653
    Burdock, G. A. (2016). Fenaroli's handbook of flavor ingredients: CRC press.
    Caratão, B., Carneiro, E., Sá, P., Almeida, B., & Carvalho, S. (2014). Properties of electrospun TiO2 nanofibers. Journal of Nanotechnology, 2014
    Carlsson, J.-O., & Martin, P. M. (2010). Chapter 7 - Chemical Vapor Deposition. In P. M. Martin (Ed.), Handbook of Deposition Technologies for Films and Coatings (Third Edition) (pp. 314-363). Boston: William Andrew Publishing.
    Carter, C. B., & Norton, M. G. (2013). Sols, Gels, and Organic Chemistry. In Ceramic Materials: Science and Engineering (pp. 411-422). New York, NY: Springer New York.
    Castellote, M., & Bengtsson, N. (2011). Principles of TiO2 Photocatalysis. In Y. Ohama & D. Van Gemert (Eds.), Applications of Titanium Dioxide Photocatalysis to Construction Materials: State-of-the-Art Report of the RILEM Technical Committee 194-TDP (pp. 5-10). Dordrecht: Springer Netherlands.
    Chatterjee, D., & Dasgupta, S. (2005). Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6(2-3), 186-205
    Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 107(7), 2891-2959
    Cheng, P., Wang, Y., Xu, L., Sun, P., Su, Z., Jin, F., Liu, F., Sun, Y., & Lu, G. (2016). 3D TiO2/ZnO composite nanospheres as an excellent electron transport anode for efficient dye-sensitized solar cells. RSC Advances, 6(56), 51320-51326
    Corby, S., Francàs, L., Kafizas, A., & Durrant, J. R. (2020). Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO3 for water oxidation. Chemical Science, 11(11), 2907-2914
    Curtis, L., Rea, W., Smith-Willis, P., Fenyves, E., & Pan, Y. (2006). Adverse health effects of outdoor air pollutants. Environ Int, 32(6), 815-830
    da Silva, C. T., Monteiro, J. P., Radovanovic, E., & Girotto, E. M. (2014). Unprecedented high plasmonic sensitivity of substrates based on gold nanoparticles. Sensors and Actuators B: Chemical, 191, 152-157
    Dalrymple, O. K., Stefanakos, E., Trotz, M. A., & Goswami, D. Y. (2010). A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental, 98(1-2), 27-38
    Darracq, G., Couvert, A., Couriol, C., Amrane, A., & Le Cloirec, P. (2012). Removal of hydrophobic volatile organic compounds in an integrated process coupling absorption and biodegradation—selection of an organic liquid phase. Water, Air, & Soil Pollution, 223(8), 4969-4997
    Das, M., Datta, J., Dey, A., Jana, R., Layek, A., Middya, S., & Ray, P. P. (2015). One step hydrothermal synthesis of a rGO–TiO2 nanocomposite and its application on a Schottky diode: improvement in device performance and transport properties. RSC Advances, 5(123), 101582-101592
    Dave, K., Park, K. H., & Dhayal, M. (2015). Two-step process for programmable removal of oxygen functionalities of graphene oxide: functional, structural and electrical characteristics. RSC Advances, 5(116), 95657-95665
    Delhoménie, M.-C., & Heitz, M. (2005). Biofiltration of air: a review. Critical reviews in biotechnology, 25(1-2), 53-72
    Demeestere, K., Dewulf, J., Ohno, T., Salgado, P. H., & Van Langenhove, H. (2005a). Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Applied Catalysis B: Environmental, 61(1-2), 140-149
    Demeestere, K., Dewulf, J., Witte, B. D., & Van Langenhove, H. (2005b). Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: Parameter study and reaction pathways. Applied Catalysis B: Environmental, 60(1-2), 93-106
    Di Paola, A., Bellardita, M., & Palmisano, L. (2013). Brookite, the Least Known TiO2 Photocatalyst. Catalysts, 3(1), 36-73
    Di Valentin, C., & Pacchioni, G. (2013). Trends in non-metal doping of anatase TiO2: B, C, N and F. Catalysis Today, 206, 12-18
    Diebold, U., & Madey, T. E. (1996). TiO2 by XPS. Surface Science Spectra, 4(3), 227-231
    Donkova, B., Dimitrov, D., Kostadinov, M., Mitkova, E., & Mehandjiev, D. (2010). Catalytic and photocatalytic activity of lightly doped catalysts M: ZnO (M= Cu, Mn). Materials Chemistry and Physics, 123(2-3), 563-568
    Drewniak, S., Muzyka, R., Stolarczyk, A., Pustelny, T., Kotyczka-Moranska, M., & Setkiewicz, M. (2016). Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors. Sensors (Basel), 16(1)
    Dupin, J.-C., Gonbeau, D., Vinatier, P., & Levasseur, A. (2000). Systematic XPS studies of metal oxides, hydroxides and peroxides. Physical Chemistry Chemical Physics, 2(6), 1319-1324
    Dvoranová, D., Brezová, V., Mazúr, M., & Malati, M. A. (2002). Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental, 37(2), 91-105
    Dylla, A. G., Henkelman, G., & Stevenson, K. J. (2013). Lithium Insertion in Nanostructured TiO2(B) Architectures. Accounts of Chemical Research, 46(5), 1104-1112
    Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K. S., & Casiraghi, C. (2012). Probing the nature of defects in graphene by Raman spectroscopy. Nano letters, 12(8), 3925-3930
    Eichler, D. R., & Papadantonakis, G. A. (2017). Activation barriers for methylation of DNA bases by dimethyl sulfate. Chemical Physics Letters, 689, 8-14
    Einaga, H., Ibusuki, T., & Futamura, S. (2004). Photocatalytic oxidation of benzene in air. J. Sol. Energy Eng., 126(2), 789-793
    El-Sheikh, S. M., Zhang, G., El-Hosainy, H. M., Ismail, A. A., O'Shea, K. E., Falaras, P., Kontos, A. G., & Dionysiou, D. D. (2014). High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J Hazard Mater, 280, 723-733
    Erdem, B., Hunsicker, R. A., Simmons, G. W., Sudol, E. D., Dimonie, V. L., & El-Aasser, M. S. (2001). XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir, 17(9), 2664-2669
    Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1-29
    Fagan, R., McCormack, D. E., Dionysiou, D. D., & Pillai, S. C. (2016). A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Materials Science in Semiconductor Processing, 42, 2-14
    Faraji, G., Kim, H. S., & Kashi, H. T. (2018). Introduction. In G. Faraji, H. S. Kim, & H. T. Kashi (Eds.), Severe Plastic Deformation (pp. 1-17): Elsevier.
    Fathy, M., Gomaa, A., Taher, F. A., El-Fass, M. M., & Kashyout, A. E.-H. B. (2016). Optimizing the preparation parameters of GO and rGO for large-scale production. Journal of Materials Science, 51(12), 5664-5675
    Fogler, H. S. (2006). Elements of chemical reaction engineering.
    Fröschl, T., Hörmann, U., Kubiak, P., Kučerová, G., Pfanzelt, M., Weiss, C. K., Behm, R., Hüsing, N., Kaiser, U., & Landfester, K. (2012). High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chemical Society Reviews, 41(15), 5313-5360
    Fu, R., Gao, S., Xu, H., Wang, Q., Wang, Z., Huang, B., & Dai, Y. (2014). Fabrication of Ti3+ self-doped TiO2(A) nanoparticle/TiO2(R) nanorod heterojunctions with enhanced visible-light-driven photocatalytic properties. RSC Adv., 4(70), 37061-37069
    Galmiz, O., Stupavska, M., Wulff, H., Kersten, H., Brablec, A., & Cernak, M. (2014). Deposition of Zn-containing films using atmospheric pressure plasma jet. Open Chemistry, 1(open-issue)
    Gao, D., Strand, J., Munde, M., & Shluger, A. (2019). Mechanisms of oxygen vacancy aggregation in SiO2 and HfO2. Frontiers in Physics, 7
    Gautam, R. K., & Chattopadhyaya, M. C. (2016). Chapter 7 - Functionalized Magnetic Nanoparticles: Adsorbents and Applications. In R. K. Gautam & M. C. Chattopadhyaya (Eds.), Nanomaterials for Wastewater Remediation (pp. 139-159). Boston: Butterworth-Heinemann.
    Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12
    Gerakines, P. A., Schutte, W., Greenberg, J., & van Dishoeck, E. F. (1994). The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures. arXiv preprint astro-ph/9409076
    Gharib, A., Fard, L. V., Pesyan, N. N., & Roshani, M. (2015). A new application of nano-graphene oxide (NGO) as a heterogeneous catalyst in oxidation of alcohols types. Chemistry Journal, 1, 151-158
    Ghorbani, M., Abdizadeh, H., & Golobostanfard, M. R. (2015). Reduction of Graphene Oxide via Modified Hydrothermal Method. Procedia Materials Science, 11, 326-330
    Giri, B. S., Kim, K. H., Pandey, R., Cho, J., Song, H., & Kim, Y. S. (2014). Review of biotreatment techniques for volatile sulfur compounds with an emphasis on dimethyl sulfide. Process Biochemistry, 49(9), 1543-1554
    Givan, A., Loewenschuss, A., & Nielsen, C. (2005). Infrared spectrum and ab initio calculations of matrix isolated methanesulfonic acid species and its 1: 1 water complex. Journal of molecular structure, 748(1-3), 77-90
    Gnanaprakasam, A., Sivakumar, V., & Thirumarimurugan, M. (2015). Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Indian Journal of Materials Science, 2015
    González-Garcı́a, N., Ayllón, J. A., Doménech, X., & Peral, J. (2004). TiO2 deactivation during the gas-phase photocatalytic oxidation of dimethyl sulfide. Applied Catalysis B: Environmental, 52(1), 69-77
    Grabowska, E., Marchelek, M., Paszkiewicz-Gawron, M., & Zaleska-Medynska, A. (2018). 3 - Metal oxide photocatalysts. In A. Zaleska-Medynska (Ed.), Metal Oxide-Based Photocatalysis (pp. 51-209): Elsevier.
    Grisdanurak, N., Chiarakorn, S., & Wittayakun, J. (2003). Utilization of mesoporous molecular sieves synthesized from natural source rice husk silica to Chlorinated Volatile Organic Compounds (CVOCs) adsorption. Korean Journal of Chemical Engineering, 20(5), 950-955
    Guillemot, F., Porte, M. C., Labrugere, C., & Baquey, C. (2002). Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications. J Colloid Interface Sci, 255(1), 75-78
    Gurunathan, S., Han, J. W., Dayem, A. A., Eppakayala, V., & Kim, J.-H. (2012). Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International journal of nanomedicine, 7, 5901
    Hafez, A. M., Zedan, A. F., AlQaradawi, S. Y., Salem, N. M., & Allam, N. K. (2016). Computational study on oxynitride perovskites for CO2 photoreduction. Energy conversion and management, 122, 207-214
    Hajaghazadeh, M., Vaiano, V., Sannino, D., Kakooei, H., Sotudeh-Gharebagh, R., & Ciambelli, P. (2014). Heterogeneous photocatalytic oxidation of methyl ethyl ketone under UV-A light in an LED-fluidized bed reactor. Catalysis Today, 230, 79-84
    Han, Z., Chang, V.-W., Wang, X., Lim, T.-T., & Hildemann, L. (2013). Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts. Chemical Engineering Journal, 218, 9-18
    Hansell, D. A., & Carlson, C. A. (2014). Biogeochemistry of marine dissolved organic matter: Academic Press.
    Haukka, S., Lakomaa, E. L., & Suntola, T. (1999). Adsorption controlled preparation of heterogeneous catalysts. In A. Dąbrowski (Ed.), Studies in Surface Science and Catalysis (Vol. 120, pp. 715-750): Elsevier.
    Heitbaum, M., Glorius, F., & Escher, I. (2006). Asymmetrische heterogene Katalyse. Angewandte Chemie, 118(29), 4850-4881
    Herrmann, J.-M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115-129
    Hino, S., Ichikawa, T., & Kojima, Y. (2010). Thermodynamic properties of metal amides determined by ammonia pressure-composition isotherms. The Journal of Chemical Thermodynamics, 42(1), 140-143
    Hodkiewicz, J. (2010). Characterizing graphene with Raman spectroscopy. Thermo Scientific application note, 51946
    Hou, D., Liu, Q., Wang, X., Quan, Y., Qiao, Z., Yu, L., & Ding, S. (2018). Facile synthesis of graphene via reduction of graphene oxide by artemisinin in ethanol. Journal of Materiomics, 4(3), 256-265
    Hsiao, M.-C., Ma, C.-C. M., Chiang, J.-C., Ho, K.-K., Chou, T.-Y., Xie, X., Tsai, C.-H., Chang, L.-H., & Hsieh, C.-K. (2013). Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide–silica hybrid nanosheets. Nanoscale, 5(13), 5863-5871
    Huang, P. J., Chang, H., Yeh, C. T., & Tsai, C. W. (1997). Phase transformation of TiO2 monitored by Thermo-Raman spectroscopy with TGA/DTA. Thermochimica Acta, 297(1-2), 85-92
    Huang, Y., Ho, S. S., Lu, Y., Niu, R., Xu, L., Cao, J., & Lee, S. (2016a). Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules, 21(1), 56
    Huang, Y., Long, B., Tang, M., Rui, Z., Balogun, M.-S., Tong, Y., & Ji, H. (2016b). Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Applied Catalysis B: Environmental, 181, 779-787
    Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339
    Jaffe, D. (1987). FT-ir spectra of acetic acid and deuterated analogs in the monomer O− H and O− D regions. Spectrochimica Acta Part A: Molecular Spectroscopy, 43(11), 1393-1396
    Jahdi, M., Mishra, S. B., Nxumalo, E. N., Mhlanga, S. D., & Mishra, A. K. (2020). Synergistic effects of sodium fluoride (NaF) on the crystallinity and band gap of Fe-doped TiO2 developed via microwave-assisted hydrothermal treatment. Optical Materials, 104, 109844
    Jang, J. S., Kim, H. G., & Lee, J. S. (2012). Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting. Catalysis Today, 185(1), 270-277
    Jappinen, P., Kangas, J., Silakoski, L., & Savolainen, H. (1993). Volatile metabolites in occupational exposure to organic sulfur compounds. Arch Toxicol, 67(2), 104-106
    Jeong, J., Chou, N., Lee, G., & Kim, S. (2016). Annealing Effects of Parylene-Caulked Polydimethylsiloxane as a Substrate of Electrodes. Sensors, 16(12), 2181
    Jing, L., Xin, B., Yuan, F., Xue, L., Wang, B., & Fu, H. (2006). Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J Phys Chem B, 110(36), 17860-17865
    Jo, J., Lee, S., Gim, J., Song, J., Kim, S., Mathew, V., Alfaruqi, M. H., Kim, S., Lim, J., & Kim, J. (2019). Facile synthesis of reduced graphene oxide by modified Hummer's method as anode material for Li-, Na- and K-ion secondary batteries. R Soc Open Sci, 6(4), 181978
    Jo, W.-K., Kumar, S., Isaacs, M. A., Lee, A. F., & Karthikeyan, S. (2017). Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Applied Catalysis B: Environmental, 201, 159-168
    Johra, F. T., Lee, J.-W., & Jung, W.-G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883-2887
    Kangas, J., Jappinen, P., & Savolainen, H. (1984a). Exposure to hydrogen sulfide, mercaptans and sulfur dioxide in pulp industry. Am Ind Hyg Assoc J, 45(12), 787-790
    Kangas, J., Jäppinen, P., & Savolainen, H. (1984b). Exposure to hydrogen sulfide, mercaptans and sulfur dioxide in pulp industry. American Industrial Hygiene Association Journal, 45(12), 787-790
    Kelly, F. J., & Fussell, J. C. (2011). Air pollution and airway disease. Clin Exp Allergy, 41(8), 1059-1071
    Kim, D. J., Lee, H. I., Yie, J. E., Kim, S.-J., & Kim, J. M. (2005). Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan. Carbon, 43(9), 1868-1873
    Korologos, C. A., Philippopoulos, C. J., & Poulopoulos, S. G. (2011). The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmospheric Environment, 45(39), 7089-7095
    Kubiak, A., Siwińska-Ciesielczyk, K., Bielan, Z., Zielińska-Jurek, A., & Jesionowski, T. (2019). Synthesis of highly crystalline photocatalysts based on TiO2 and ZnO for the degradation of organic impurities under visible-light irradiation. Adsorption, 25(3), 309-325
    Kumar, A., & Pandey, G. (2017). A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J, 1(3), 1-10
    Kumar, K. V., Porkodi, K., & Rocha, F. (2008). Langmuir–Hinshelwood kinetics–a theoretical study. Catalysis Communications, 9(1), 82-84
    Kumar, P., Badrinarayanan, S., & Sastry, M. (2000a). Nanocrystalline TiO2 studied by optical. FTIR and X-ray 0.9 0.0031, 16, 22
    Kumar, P., Divya, N., & Ratan, J. (2019). Synthesis and characterization of chemically derived graphene oxide from graphite. In Sustainable Engineering (pp. 85-94): Springer.
    Kumar, P. M., Badrinarayanan, S., & Sastry, M. (2000b). Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin solid films, 358(1-2), 122-130
    Kumar, S., Ahlawat, W., Bhanjana, G., Heydarifard, S., Nazhad, M. M., & Dilbaghi, N. (2014). Nanotechnology-based water treatment strategies. J Nanosci Nanotechnol, 14(2), 1838-1858
    Kumar, S. G., & Devi, L. G. (2011a). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A, 115(46), 13211-13241
    Kumar, T. P., Rahul, M., & Chandrajit, B. (2011b). Biofiltration of volatile organic compounds (VOCs): An overview. Res J Chem Sci, 2231, 606X
    Kwan, Y. C. G., Ng, G. M., & Huan, C. H. A. (2015). Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum. Thin solid films, 590, 40-48
    Lance, R. A. (2018). Optical Analysis of Titania: Band Gaps of Brookite, Rutile and Anatase.
    Larciprete, R., Fabris, S., Sun, T., Lacovig, P., Baraldi, A., & Lizzit, S. (2011). Dual path mechanism in the thermal reduction of graphene oxide. Journal of the American Chemical Society, 133(43), 17315-17321
    Lee, C., Jin, C., Kim, H., & Kim, H. W. (2010). The photoluminescence properties of TiO2-sheathed ZnSe nanowires. Current Applied Physics, 10(4), 1017-1021
    Lee, E., Kim, J.-Y., Kwon, B. J., Jang, E.-S., & An, S. J. (2014a). Vacancy filling effect of graphene on photoluminescence behavior of ZnO/graphene nanocomposite. physica status solidi (RRL) - Rapid Research Letters, 8(10), 836-840
    Lee, M. H., Geva, E., & Dunietz, B. D. (2014b). Calculation from first-principles of golden rule rate constants for photoinduced subphthalocyanine/fullerene interfacial charge transfer and recombination in organic photovoltaic cells. The Journal of Physical Chemistry C, 118(18), 9780-9789
    León, A., Reuquen, P., Garín, C., Segura, R., Vargas, P., Zapata, P., & Orihuela, P. A. (2017). FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Applied Sciences, 7(1), 49
    Levine, R. (2005). Molecular Reaction Dynamics, Cambridge University Press. In: Cambridge.
    Li, H., Zhang, X., & Cui, X. (2014a). A facile and waste-free strategy to fabricate Pt-C/TiO2 microspheres: Enhanced photocatalytic performance for hydrogen evolution. International Journal of Photoenergy, 2014
    Li, J., Luo, G., Du, Z., & Ma, Y. (2018). Hollow waveguide enhanced dimethyl sulfide sensor based on a 3.3 μm interband cascade laser. Sensors and Actuators B: Chemical, 255, 3550-3557
    Li, J. J., Cai, S. C., Xu, Z., Chen, X., Chen, J., Jia, H. P., & Chen, J. (2017). Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light. J Hazard Mater, 325, 261-270
    Li, L., Dou, Y., Wang, L., Luo, M., & Liang, J. (2014b). One-step synthesis of high-quality N-doped graphene/Fe3O4 hybrid nanocomposite and its improved supercapacitor performances. RSC Advances, 4(49), 25658-25665
    Li, X., Yu, J., Wageh, S., Al-Ghamdi, A. A., & Xie, J. (2016). Graphene in Photocatalysis: A Review. Small, 12(48), 6640-6696
    Li, X., Zhuang, Z., Li, W., & Pan, H. (2012). Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Applied Catalysis A: General, 429, 31-38
    Li, X., Zou, X., Qu, Z., Zhao, Q., & Wang, L. (2011). Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method. Chemosphere, 83(5), 674-679
    Li, Z.-Q., Wang, H.-L., Zi, L.-Y., Zhang, J.-J., & Zhang, Y.-S. (2015). Preparation and photocatalytic performance of magnetic TiO2 –Fe3O4 /graphene (RGO) composites under VIS-light irradiation. Ceramics International, 41(9), 10634-10643
    Lin, J.-H., Patil, R. A., Devan, R. S., Liu, Z.-A., Wang, Y.-P., Ho, C.-H., Liou, Y., & Ma, Y.-R. (2014a). Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres. Scientific reports, 4, 6967
    Lin, W., Xie, X., Wang, X., Wang, Y., Segets, D., & Sun, J. (2018). Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO2 photocatalyst. Chemical Engineering Journal, 349, 708-718
    Lin, Y.-H., Hsueh, H.-T., Chang, C.-W., & Chu, H. (2016). The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2 : Characterization, kinetics, and reaction pathways. Applied Catalysis B: Environmental, 199, 1-10
    Lin, Y.-T., Weng, C.-H., & Chen, F.-Y. (2014b). Key operating parameters affecting photocatalytic activity of visible-light-induced C-doped TiO2 catalyst for ethylene oxidation. Chemical Engineering Journal, 248, 175-183
    Liqiang, J., Xiaojun, S., Baifu, X., Baiqi, W., Weimin, C., & Honggang, F. (2004). The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. Journal of Solid State Chemistry, 177(10), 3375-3382
    Liu, G., Yang, H. G., Pan, J., Yang, Y. Q., Lu, G. Q., & Cheng, H.-M. (2014). Titanium dioxide crystals with tailored facets. Chemical Reviews, 114(19), 9559-9612
    Liu, P., Cai, W., Fang, M., Li, Z., Zeng, H., Hu, J., Luo, X., & Jing, W. (2009). Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity. Nanotechnology, 20(28), 285707
    Liu, T.-x., Li, X.-z., & Li, F.-b. (2008). AgNO3-induced photocatalytic degradation of odorous methyl mercaptan in gaseous phase: mechanism of chemisorption and photocatalytic reaction. Environmental science & technology, 42(12), 4540-4545
    Liu, Y., Shi, Y., Zhang, S., Liu, B., Sun, X., & Yang, D. (2019). Optimizing the interface of C/titania@ reduced graphene oxide nanofibers for improved photocatalytic activity. Journal of Materials Science, 54(12), 8907-8918
    Lo, C.-C., Hung, C.-H., Yuan, C.-S., & Wu, J.-F. (2007). Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells, 91(19), 1765-1774
    Loan, T. T., Huong, V. H., Tham, V. T., & Long, N. N. (2018). Effect of zinc doping on the bandgap and photoluminescence of Zn2+-doped TiO2 nanowires. Physica B: Condensed Matter, 532, 210-215
    Loryuenyong, V., Totepvimarn, K., Eimburanapravat, P., Boonchompoo, W., & Buasri, A. (2013). Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Advances in Materials Science and Engineering, 2013
    Lu, Z., Zeng, L., Song, W., Qin, Z., Zeng, D., & Xie, C. (2017). In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Applied Catalysis B: Environmental, 202, 489-499
    Ludvigsson, M., Lindgren, J., & Tegenfeldt, J. (2000). FTIR study of water in cast Nafion films. Electrochimica Acta, 45(14), 2267-2271
    Lv, K., Fang, S., Si, L., Xia, Y., Ho, W., & Li, M. (2017). Fabrication of TiO2 nanorod assembly grafted rGO (rGO@TiO2 -NR) hybridized flake-like photocatalyst. Applied Surface Science, 391, 218-227
    Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., & Li, C. (2014). Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 114(19), 9987-10043
    Ma, Z., Chen, D., Gu, J., Bao, B., & Zhang, Q. (2015). Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy conversion and management, 89, 251-259
    Maddinedi, S. B., Mandal, B. K., Vankayala, R., Kalluru, P., & Pamanji, S. R. (2015). Bioinspired reduced graphene oxide nanosheets using Terminalia chebula seeds extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 117-124
    Mahmoodi, N. M., Arami, M., Limaee, N. Y., & Tabrizi, N. S. (2006). Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. Journal of colloid and interface Science, 295(1), 159-164
    Makhlouf, A. S. H. (2011). 1 - Current and advanced coating technologies for industrial applications. In A. S. H. Makhlouf & I. Tiginyanu (Eds.), Nanocoatings and Ultra-Thin Films (pp. 3-23): Woodhead Publishing.
    Malard, L., Pimenta, M., Dresselhaus, G., & Dresselhaus, M. (2009). Raman spectroscopy in graphene. Physics reports, 473(5-6), 51-87
    Mali, S., Desai, S., Dalavi, D., Betty, C., Bhosale, P., & Patil, P. (2011). CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application. Photochemical & Photobiological Sciences, 10(10), 1652-1658
    Malik, A. S., Liu, T., Dupuis, M., Li, R., & Li, C. (2020). Water Oxidation on TiO2: A Comparative DFT Study of 1e-, 2e-, and 4e-Processes on Rutile, Anatase, and Brookite. The Journal of Physical Chemistry C
    Manoratne, C., Rosa, S., & Kottegoda, I. (2017). XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite. Material Science Research India, 14(1), 19-30
    Marttila, O., Jaakkola, J. J., Vilkka, V., Jappinen, P., & Haahtela, T. (1994). The South Karelia Air Pollution Study: the effects of malodorous sulfur compounds from pulp mills on respiratory and other symptoms in children. Environ Res, 66(2), 152-159
    McNaught, A. D., & Wilkinson, A. (1997). Compendium of chemical terminology (Vol. 1669): Blackwell Science Oxford.
    Menon, N. G., Tatiparti, S. S. V., & Mukherji, S. (2019). Synthesis, characterization and photocatalytic activity evaluation of TiO2–ZnO nanocomposites: Elucidating effect of varying Ti: Zn molar ratio. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 565, 47-58
    Mermoux, M., Chabre, Y., & Rousseau, A. (1991). FTIR and 13C NMR study of graphite oxide. Carbon, 29(3), 469-474
    Michael, A. (2011). A surface science perspective on photocatalysis. Surf. Sci. Rep, 66, 6-7
    Mokhtar, M., El Enein, S. A., Hassaan, M., Morsy, M., & Khalil, M. (2017). Thermally reduced graphene oxide: Synthesis, structural and electrical properties. International Journal of Nanoparticles and Nanotechnology, 3(1)
    Mopper, K., & Kieber, D. J. (2002). Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorus. In Biogeochemistry of marine dissolved organic matter (Vol. 455): Academic Press San Diego, CA.
    Mu, B., & Wang, A. (2019). 11 - Fabrication and Applications of Carbon/Clay Mineral Nanocomposites. In A. Wang & W. Wang (Eds.), Nanomaterials from Clay Minerals (pp. 537-587): Elsevier.
    Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A., & Vaidya, A. (2010). Bioreactors for treatment of VOCs and odours - a review. J Environ Manage, 91(5), 1039-1054
    Muñoz-Batista, M. J., Kubacka, A., Gómez-Cerezo, M. N., Tudela, D., & Fernández-García, M. (2013). Sunlight-driven toluene photo-elimination using CeO2-TiO2 composite systems: A kinetic study. Applied Catalysis B: Environmental, 140, 626-635
    Myhre, G., Shindell, D., & Pongratz, J. (2014). Anthropogenic and natural radiative forcing.
    Najafi, F., & Rajabi, M. (2015). Thermal gravity analysis for the study of stability of graphene oxide–glycine nanocomposites. International Nano Letters, 5(4), 187-190
    Najafpour, G., Hilal, N., & Ahmad, A. L. (2007). CHAPTER 16 - Membrane Separation Processes. In G. D. Najafpour (Ed.), Biochemical Engineering and Biotechnology (pp. 351-389). Amsterdam: Elsevier.
    Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189
    Naldoni, A., D’Arienzo, M., Altomare, M., Marelli, M., Scotti, R., Morazzoni, F., Selli, E., & Dal Santo, V. (2013). Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Applied Catalysis B: Environmental, 130-131, 239-248
    Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4(1), 97-118
    Naveen, A. N., & Selladurai, S. (2015). Novel low temperature synthesis and electrochemical characterization of mesoporous nickel cobaltite-reduced graphene oxide (RGO) composite for supercapacitor application. Electrochimica Acta, 173, 290-301
    Nevanperä, Ojala, Laitinen, Pitkäaho, Saukko, & Keiski. (2019). Catalytic Oxidation of Dimethyl Disulfide over Bimetallic Cu–Au and Pt–Au Catalysts Supported on γ-Al2O3, CeO2, and CeO2–Al2O3. Catalysts, 9(7)
    Nguyen, T. B., Hwang, M.-J., & Ryu, K.-S. (2012). Synthesis and High Photocatalytic Activity of Zn-doped TiO2 Nanoparticles by Sol-gel and Ammonia-Evaporation Method. Bulletin of the Korean Chemical Society, 33(1), 243-247
    Niki, H., Maker, P., Savage, C., & Breitenbach, L. (1983). An FTIR study of the mechanism for the reaction HO+ CH3SCH3. International Journal of Chemical Kinetics, 15(7), 647-654
    Noyes, W. A. (1940). The Kinetics of Chemical Change (Hinshelwood, C. N.). Journal of Chemical Education, 17(11), 552
    Nurdiansah, H., Susanti, D., Firlyana, R. E., & Purwaningsih, H. (2019). Effect of rGO Addition Toward Photocatalyst Properties of ZnO/rGO/TiO2 for Rhodamine B Degradation. Paper presented at the Materials Science Forum.
    Obee, T. N., & Hay, S. O. (1997). Effects of moisture and temperature on the photooxidation of ethylene on titania. Environmental science & technology, 31(7), 2034-2038
    Oskam, G., Nellore, A., Penn, R. L., & Searson, P. C. (2003). The Growth Kinetics of TiO2 Nanoparticles from Titanium(IV) Alkoxide at High Water/Titanium Ratio. The Journal of Physical Chemistry B, 107(8), 1734-1738
    Pang, S., Huang, J. G., Su, Y., Geng, B., Lei, S. Y., Huang, Y. T., Lyu, C., & Liu, X. J. (2016). Synthesis and Modification of Zn-doped TiO2 Nanoparticles for the Photocatalytic Degradation of Tetracycline. Photochem Photobiol, 92(5), 651-657
    Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., & Ruoff, R. S. (2011a). Hydrazine-reduction of graphite- and graphene oxide. Carbon, 49(9), 3019-3023
    Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., & Ruoff, R. S. (2011b). Hydrazine-reduction of graphite-and graphene oxide. Carbon, 49(9), 3019-3023
    Pei, J., Han, X., & Lu, Y. (2015). Performance and kinetics of catalytic oxidation of formaldehyde over copper manganese oxide catalyst. Building and Environment, 84, 134-141
    Pérez-Gilabert, M., & Garcı́a-Carmona, F. (2001). Dimethyl sulfide, a volatile flavor constituent, is a slow-binding inhibitor of tyrosinase. Biochemical and biophysical research communications, 285(2), 257-261
    Perron, H., Vandenborre, J., Domain, C., Drot, R., Roques, J., Simoni, E., Ehrhardt, J. J., & Catalette, H. (2007). Combined investigation of water sorption on TiO2 rutile (110) single crystal face: XPS vs. periodic DFT. Surface Science, 601(2), 518-527
    Peter, L., Hakki, A., Mendive, C., Paz, Y., Choi, W., Wark, M., Nosaka, Y., Diwald, O., Emeline, A., & Ye, J. (2016). Photocatalysis: fundamentals and perspectives: Royal Society of Chemistry.
    Pettersson, M., Lundell, J., Khriachtchev, L., & Räsänen, M. (1997). IR spectrum of the other rotamer of formic acid, cis-HCOOH. Journal of the American Chemical Society, 119(48), 11715-11716
    Qiao, L., Chen, J., & Yang, X. (2011). Potential particulate pollution derived from UV-induced degradation of odorous dimethyl sulfide. Journal of Environmental Sciences, 23(1), 51-59
    Qu, Y., Gao, Y., Kong, F., Zhang, S., Du, L., & Yin, G. (2013). Pt–rGO–TiO2 nanocomposite by UV-photoreduction method as promising electrocatalyst for methanol oxidation. International Journal of Hydrogen Energy, 38(28), 12310-12317
    Quici, N., Vera, M. L., Choi, H., Puma, G. L., Dionysiou, D. D., Litter, M. I., & Destaillats, H. (2010). Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254+ 185 nm UV irradiation. Applied Catalysis B: Environmental, 95(3-4), 312-319
    Rane, A. V., Kanny, K., Abitha, V. K., & Thomas, S. (2018). Chapter 5 - Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, & S. Thomas (Eds.), Synthesis of Inorganic Nanomaterials (pp. 121-139): Woodhead Publishing.
    Raoufi, D. (2013). Synthesis and photoluminescence characterization of ZnO nanoparticles. Journal of Luminescence, 134, 213-219
    Revah, S., & Morgan-Sagastume, J. M. (2005). Methods of odor and VOC control. In Biotechnology for odor and air pollution control (pp. 29-63): Springer.
    Reyes, C., D., Rodriguez, G., G., Espinosa, P., M. E., Cab, C., de Coss, R., & Oskam, G. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 19(14), 145605
    Riikonen, J. (2016). Solvent Loading of Porous Silicon. In L. Canham (Ed.), Handbook of Porous Silicon (pp. 1-13). Cham: Springer International Publishing.
    Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., & Sing, K. S. (2013). Adsorption by powders and porous solids: principles, methodology and applications: Academic press.
    Saini, C., Barman, A., Das, D., Satpati, B., Bhattacharyya, S., Kanjilal, D., Ponomaryov, A., Zvyagin, S., & Kanjilal, A. (2017). Role of oxygen vacancy on the hydrophobic behavior of TiO2 nanorods on chemically etched Si pyramids. The Journal of Physical Chemistry C, 121(1), 278-283
    Salih, E., Mekawy, M., Hassan, R. Y., & El-Sherbiny, I. M. (2016). Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite. Journal of Nanostructure in Chemistry, 6(2), 137-144
    Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev, 114(19), 9919-9986
    Sedghi, R., & Heidari, F. (2016). A novel & effective visible light-driven TiO2/magnetic porous graphene oxide nanocomposite for the degradation of dye pollutants. RSC Advances, 6(55), 49459-49468
    Serpone, N. (2006). Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B, 110(48), 24287-24293
    Shahriary, L., & Athawale, A. A. (2014). Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng, 2(01), 58-63
    Shao, L.-M., Zhang, C.-Y., Wu, D., Lü, F., Li, T.-S., & He, P.-J. (2014). Effects of bulking agent addition on odorous compounds emissions during composting of OFMSW. Waste management, 34(8), 1381-1390
    Shareefdeen, Z. (2005). Biotechnology for odor and air pollution control: Springer Science & Business Media.
    Sharma, A., Karn, R., & Pandiyan, S. (2014). Synthesis of TiO2 nanoparticles by sol-gel method and their characterization. J. Basic Appl. Eng. Res, 1(9), 1-5
    Shaw, S. L., Mitloehner, F. M., Jackson, W., DePeters, E. J., Fadel, J. G., Robinson, P. H., Holzinger, R., & Goldstein, A. H. (2007). Volatile organic compound emissions from dairy cows and their waste as measured by proton-transfer-reaction mass spectrometry. Environmental science & technology, 41(4), 1310-1316
    Shayegan, Z., Lee, C.-S., & Haghighat, F. (2018). TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chemical Engineering Journal, 334, 2408-2439
    Sheng, J. J. (2011). Chapter 3 - Salinity Effect and Ion Exchange. In J. J. Sheng (Ed.), Modern Chemical Enhanced Oil Recovery (pp. 51-78). Boston: Gulf Professional Publishing.
    Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., Jin, M. H., Jeong, H. K., Kim, J. M., & Choi, J. Y. (2009). Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 19(12), 1987-1992
    Shin, Y. E., Sa, Y. J., Park, S., Lee, J., Shin, K. H., Joo, S. H., & Ko, H. (2014). An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks. Nanoscale, 6(16), 9734-9741
    Shrubsole, C., Dimitroulopoulou, S., Foxall, K., Gadeberg, B., & Doutsi, A. (2019). IAQ guidelines for selected volatile organic compounds (VOCs) in the UK. Building and Environment, 165, 106382
    Shu, Y., Sun, H., Quan, X., & Chen, S. (2012). Enhancement of Catalytic Activity Over the Iron-Modified Ce/TiO2 Catalyst for Selective Catalytic Reduction of NOx with Ammonia. The Journal of Physical Chemistry C, 116(48), 25319-25327
    Si, L., Huang, Z. a., Lv, K., Tang, D., & Yang, C. (2014). Facile preparation of Ti3+ self-doped TiO2 nanosheets with dominant {001} facets using zinc powder as reductant. Journal of Alloys and Compounds, 601, 88-93
    Sietsma, J. R. A., Jos van Dillen, A., de Jongh, P. E., & de Jong, K. P. (2006). Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying. In E. M. Gaigneaux, M. Devillers, D. E. De Vos, S. Hermans, P. A. Jacobs, J. A. Martens, & P. Ruiz (Eds.), Studies in Surface Science and Catalysis (Vol. 162, pp. 95-102): Elsevier.
    Singh, S., Mahalingam, H., & Singh, P. K. (2013). Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Applied Catalysis A: General, 462-463, 178-195
    Sinnott, R., & Towler, G. (2019). Chemical engineering design: SI Edition: Butterworth-Heinemann.
    Sivasankar, B. (2008). Engineering chemistry: Tata McGraw-Hill New Delhi.
    Smith, K. R., Bruce, N., Balakrishnan, K., Adair-Rohani, H., Balmes, J., Chafe, Z., Dherani, M., Hosgood, H. D., Mehta, S., Pope, D., Rehfuess, E., & Group, H. C. R. E. (2014). Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annu Rev Public Health, 35, 185-206
    Some, S., Xu, Y., Kim, Y., Yoon, Y., Qin, H., Kulkarni, A., Kim, T., & Lee, H. (2013). Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes. Scientific reports, 3, 1868
    Stevanovic, A., Buttner, M., Zhang, Z., & Yates, J. T., Jr. (2012). Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J Am Chem Soc, 134(1), 324-332
    Stocker, T. F., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. (2013). Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Climate change
    Strankowski, M., Włodarczyk, D., Piszczyk, Ł., & Strankowska, J. (2016). Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. Journal of Spectroscopy, 2016
    Sudnick, J. J., & Corwin, D. L. (1994). VOC Control Techniques. Hazardous Waste and Hazardous Materials, 11(1), 129-143
    Sun, H., Ullah, R., Chong, S., Ang, H. M., Tadé, M. O., & Wang, S. (2011). Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst. Applied Catalysis B: Environmental, 108-109, 127-133
    Sun, N., Ma, J., Wang, C., Xue, J., Qiang, L., & Tang, J. (2018). A facile and efficient method to directly synthesize TiO2/rGO with enhanced photocatalytic performance. Superlattices and Microstructures, 121, 1-8
    Tang, H., Berger, H., Schmid, P. E., Lévy, F., & Burri, G. (1993). Photoluminescence in TiO2 anatase single crystals. Solid State Communications, 87(9), 847-850
    Tay, Q., Wang, X., Zhao, X., Hong, J., Zhang, Q., Xu, R., & Chen, Z. (2016). Enhanced visible light hydrogen production via a multiple heterojunction structure with defect-engineered g-C3N4 and two-phase anatase/brookite TiO2. Journal of Catalysis, 342, 55-62
    Terazawa, K., Mizukami, K., Wu, B., & Takatori, T. (1991). Fatality due to inhalation of dimethyl sulfide in a confined space: A case report and animal experiments. International journal of legal medicine, 104(3), 141-144
    Thevenet, F., Sivachandiran, L., Guaitella, O., Barakat, C., & Rousseau, A. (2014). Plasma–catalyst coupling for volatile organic compound removal and indoor air treatment: a review. Journal of Physics D: Applied Physics, 47(22)
    Thomas, R., Abdul Rasheed, P., & N, S. (2014). Synthesis of nanotitania decorated few-layer graphene for enhanced visible light driven photocatalysis. Journal of colloid and interface Science, 428, 214–221
    Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069
    Thuong, H. T. T., Kim, C. T. T., Quang, L. N., & Kosslick, H. (2019). Highly active brookite TiO2-assisted photocatalytic degradation of dyes under the simulated solar− UVA radiation. Progress in Natural Science: Materials International
    Tian, H., Shen, K., Hu, X., Qiao, L., & Zheng, W. (2017). N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. Journal of Alloys and Compounds, 691, 369-377
    Tieng, S., Kanaev, A., & Chhor, K. (2011). New homogeneously doped Fe (III)–TiO2 photocatalyst for gaseous pollutant degradation. Applied Catalysis A: General, 399(1-2), 191-197
    Tiwari, A. (2013). Innovative Graphene Technologies: Developments & Characterisation (Vol. 1): Smithers Rapra.
    Tobaldi, D. M., Piccirillo, C., Rozman, N., Pullar, R. C., Seabra, M. P., Škapin, A. S., Castro, P. M. L., & Labrincha, J. A. (2016). Effects of Cu, Zn and Cu-Zn addition on the microstructure and antibacterial and photocatalytic functional properties of Cu-Zn modified TiO2 nano-heterostructures. Journal of Photochemistry and Photobiology A: Chemistry, 330, 44-54
    Trapalis, A., Todorova, N., Giannakopoulou, T., Boukos, N., Speliotis, T., Dimotikali, D., & Yu, J. (2016). TiO2/graphene composite photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide. Applied Catalysis B: Environmental, 180, 637-647
    Trejo, F., Ancheyta, J., Sánchez, S., & Rodríguez, M. A. (2011). Comparison of Different Power-law Kinetic Models for Hydrocracking of Asphaltenes. Petroleum Science and Technology, 25(1-2), 263-275
    Tucureanu, V., Matei, A., & Avram, A. M. (2016). FTIR spectroscopy for carbon family study. Critical reviews in analytical chemistry, 46(6), 502-520
    Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of Catalysis, 122(1), 178-192
    Vaiano, V., Sacco, O., Sannino, D., & Ciambelli, P. (2015). Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chemical Engineering Journal, 261, 3-8
    Vandenbroucke, A. (2015). Abatement of volatile organic compounds by combined use of non-thermal plasma and heterogeneous catalysis. Ghent University,
    Vannice, M. A. (2007). An analysis of the Mars–van Krevelen rate expression. Catalysis Today, 123(1-4), 18-22
    Wall, M. (2011). The Raman spectroscopy of graphene and the determination of layer thickness. Thermo Sci, 5
    Wang, C.-y., Pagel, R., Dohrmann, J. K., & Bahnemann, D. W. (2006). Antenna mechanism and deaggregation concept: novel mechanistic principles for photocatalysis. Comptes Rendus Chimie, 9(5-6), 761-773
    Wang, F., & Zhang, K. (2011a). Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. Journal of Molecular Catalysis A: Chemical, 345(1-2), 101-107
    Wang, P., Wang, J., Wang, X., Yu, H., Yu, J., Lei, M., & Wang, Y. (2013a). One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 132-133, 452-459
    Wang, W., Hao, Q., Lei, W., Xia, X., & Wang, X. (2012a). Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Advances, 2(27), 10268-10274
    Wang, W., Lu, C.-H., Ni, Y.-R., Song, J.-B., Su, M.-X., & Xu, Z.-Z. (2012b). Enhanced visible-light photoactivity of {001} facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+. Catalysis Communications, 22, 19-23
    Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., & He, J. (2013b). Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 5(18), 8326-8339
    Wang, Z., Liu, J., Dai, Y., Dong, W., Zhang, S., & Chen, J. (2011b). Dimethyl Sulfide Photocatalytic Degradation in a Light-Emitting-Diode Continuous Reactor: Kinetic and Mechanistic Study. Industrial & Engineering Chemistry Research, 50(13), 7977-7984
    Watson, S., Whitton, B., Higgins, S., Paerl, H., Brooks, B., & Wehr, J. (2015). Harmful Algal Blooms. In (pp. 873-920).
    Wattanawikkam, C., & Pecharapa, W. (2015). Synthesis and Characterization of Zn-Doped TiO2 Nanoparticles via Sonochemical Method. Integrated Ferroelectrics, 165(1), 167-175
    Weise, C. (1882). Christian Weise's Bauern-Komödie Von Tobias und der Schwalbe: aufgeführt in Jahre 1682 (Vol. 5): U. Hofmann.
    Weon, S., Kim, J., & Choi, W. (2018). Dual-components modified TiO2 with Pt and fluoride as deactivation-resistant photocatalyst for the degradation of volatile organic compound. Applied Catalysis B: Environmental, 220, 1-8
    Wetchakun, N., Incessungvorn, B., Wetchakun, K., & Phanichphant, S. (2012). Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method. Materials Letters, 82, 195-198
    Wieckowski, A. (2009). Fuel cell catalysis: a surface science approach (Vol. 1): John Wiley & Sons.
    Wolkoff, P. (2013). Indoor air pollutants in office environments: assessment of comfort, health, and performance. Int J Hyg Environ Health, 216(4), 371-394
    Wu, J.-F., Hung, C.-H., & Yuan, C.-S. (2005). Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapor. Journal of Photochemistry and Photobiology A: Chemistry, 170(3), 299-306
    Wu, M., Lin, G., Chen, D., Wang, G., He, D., Feng, S., & Xu, R. (2002). Sol-Hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide. Chemistry of Materials, 14(5), 1974-1980
    Wu, Z.-S., Ren, W., Gao, L., Liu, B., Jiang, C., & Cheng, H.-M. (2009). Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 47(2), 493-499
    Xiong, C., Jiang, S., Song, S., Wu, X., Li, J., & Le, Z. (2018). Solid-solution-like o-C3N4/Ag2SO4 nanocomposite as a direct Z-scheme photocatalytic system for photosynthesis of active oxygen species. ACS Sustainable Chemistry & Engineering, 6(8), 10905-10913
    Yang, G., Jiang, Z., Shi, H., Jones, M. O., Xiao, T., Edwards, P. P., & Yan, Z. (2010a). Study on the photocatalysis of F–S co-doped TiO2 prepared using solvothermal method. Applied Catalysis B: Environmental, 96(3-4), 458-465
    Yang, L., Liu, Z., Shi, J., Zhang, Y., Hu, H., & Shangguan, W. (2007). Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes. Separation and Purification Technology, 54(2), 204-211
    Yang, S., Feng, X., Ivanovici, S., & Müllen, K. (2010b). Fabrication of graphene‐encapsulated oxide nanoparticles: towards high‐performance anode materials for lithium storage. Angewandte Chemie International Edition, 49(45), 8408-8411
    Yao, Y. (2018). Visible-Light Photocatalysis of Carbon-Based Materials: BoD–Books on Demand.
    Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., & Uzu, H. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature energy, 2(5), 17032
    Yu, Y., Jimmy, C. Y., Yu, J.-G., Kwok, Y.-C., Che, Y.-K., Zhao, J.-C., Ding, L., Ge, W.-K., & Wong, P.-K. (2005). Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A: General, 289(2), 186-196
    Yuan, B., Bao, C., Qian, X., Wen, P., Xing, W., Song, L., & Hu, Y. (2014). A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Materials Research Bulletin, 55, 48-52
    Yurieva, T. M., Plyasova, L. M., Zaikovskii, V. I., Minyukova, T. P., Bliek, A., van den Heuvel, J. C., Davydova, L. P., Molina, I. Y., Demeshkina, M. P., & Khassin, A. A. (2004). In situ XRD and HRTEM studies on the evolution of the Cu/ZnO methanol synthesis catalyst during its reduction and re-oxidation. Physical Chemistry Chemical Physics, 6(18), 4522-4526
    Zhang, J., Li, M., Feng, Z., Chen, J., & Li, C. (2006). UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B, 110(2), 927-935
    Zhang, J., Liu, P., Lu, Z., Xu, G., Wang, X., Qian, L., Wang, H., Zhang, E., Xi, J., & Ji, Z. (2015a). One-step synthesis of rutile nano-TiO2 with exposed {1 1 1} facets for high photocatalytic activity. Journal of Alloys and Compounds, 632, 133-139
    Zhang, J., Wu, B., Huang, L., Liu, P., Wang, X., Lu, Z., Xu, G., Zhang, E., Wang, H., & Kong, Z. (2016a). Anatase nano-TiO2 with exposed curved surface for high photocatalytic activity. Journal of Alloys and Compounds, 661, 441-447
    Zhang, J., Xu, Y., Liu, Z., Yang, W., & Liu, J. (2015b). A highly conductive porous graphene electrode prepared via in situ reduction of graphene oxide using Cu nanoparticles for the fabrication of high performance supercapacitors. RSC Advances, 5(67), 54275-54282
    Zhang, J., Zhou, P., Liu, J., & Yu, J. (2014a). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics, 16(38), 20382-20386
    Zhang, W., Pei, X., Yang, B., & He, H. (2014b). Effects of boron content and calcination temperature on properties of B-TiO2 photocatalyst prepared by solvothermal method. Journal of Advanced Oxidation Technologies, 17(1), 66-72
    Zhang, X., & Cresswell, M. (2016b). Chapter 1 - Materials for Inorganic Controlled Release Technology. In X. Zhang & M. Cresswell (Eds.), Inorganic Controlled Release Technology (pp. 1-16). Boston: Butterworth-Heinemann.
    Zhang, X., Tian, H., Wang, X., Xue, G., Tian, Z., Zhang, J., Yuan, S., Yu, T., & Zou, Z. (2013). The role of oxygen vacancy-Ti3+ states on TiO2 nanotubes' surface in dye-sensitized solar cells. Materials Letters, 100, 51-53
    Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012
    Zhang, Y., Zhu, Z., Zheng, Y., Chen, Y., Yin, F., Zhang, W., Dong, H., & Xin, H. (2019). Characterization of Volatile Organic Compound (VOC) Emissions from Swine Manure Biogas Digestate Storage. Atmosphere, 10(7)
    Zhang, Y. X., Li, G. H., Jin, Y. X., Zhang, Y., Zhang, J., & Zhang, L. D. (2002). Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chemical Physics Letters, 365(3-4), 300-304
    Zheng, Z., Huang, B., Meng, X., Wang, J., Wang, S., Lou, Z., Wang, Z., Qin, X., Zhang, X., & Dai, Y. (2013). Metallic zinc- assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chem Commun (Camb), 49(9), 868-870
    Zhong, H., Mirkovic, T., & Scholes, G. D. (2011). 5.06 - Nanocrystal Synthesis. In D. L. Andrews, G. D. Scholes, & G. P. Wiederrecht (Eds.), Comprehensive Nanoscience and Technology (pp. 153-201). Amsterdam: Academic Press.
    Zhong, L., Haghighat, F., & Lee, C.-S. (2013). Ultraviolet photocatalytic oxidation for indoor environment applications: Experimental validation of the model. Building and Environment, 62, 155-166
    Zhu, Z., Su, X., Yu, J., Zhang, T., Qi, L., & Basit, A. (2018). Investigation of reactive oxygen species produced by microwave electrodeless discharge lamp on oxidation of dimethyl sulfide. Chemosphere, 212, 1172-1179

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE