簡易檢索 / 詳目顯示

研究生: 洪嘉璟
Hung, Jia-Jing
論文名稱: 鐵基軟磁複合材料磷化處理及表面改質對其電磁性質影響之研究
Phosphating treatment and surface modification effects on the electromagnetic properties of iron-based soft magnetic composites
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 119
中文關鍵詞: 磷化處理表面改質額定電流電感軟磁複合材料
外文關鍵詞: Phosphating treatment, Surface modification, Rated current, Power inductor, Soft magnetic composites
相關次數: 點閱:150下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以羰基鐵粉作為原料,在表面利用磷化處理生成一層磷酸鹽皮膜,此非磁性層可有效降低磁損失,使電流不容易達到飽和,可用來製備一體成形大功率電感器。結果證實添加2wt%磷酸可以得到膜厚均勻且絕緣性高之皮膜,並經由穿透式電子顯微鏡證實皮膜為非晶質結構,透過鹽霧試驗分析證實磷化處理可提高鐵粉耐腐蝕性。
    為了改善鐵粉與高分子間之相容性,本研究亦利用離子型界面活性劑硬脂酸鈉及非離子型界面活性劑氨基矽烷,對經磷酸處理之羰基鐵粉進行改質。結果發現硬脂酸鈉有助於提高粉末的堆積密度,並因空間位阻效應而有較佳的流變性,即使表面經過預磨耗測試仍可提供較佳的抗腐蝕性,且可以提供磷化鐵粉成形前之潤滑性,並於樹脂固化時受到分解而不留在胚體當中,有助於提升其直流疊加特性與磁性質,但因分解所形成之胚體缺陷則會造成拉伸強度的劣化。而添加氨基矽烷改質有助於降低磷化鐵粉與環氧氯丙烷混合之黏度,並提高磷化鐵粉與環氧樹脂之相容性,使得胚體中氣隙分佈較均勻助於增加其直流疊加特性,並因矽烷與環氧樹脂產生化學鍵結使得胚體強度顯著提升。並且藉由矽烷改質可使磁區壁之移動較為容易,有效降低磁損失。

    This study investigated phosphating treatment and surface modification effects on the electromagnetic properties of iron-based soft magnetic composites. Insulating coating can prevent iron rusting and provide higher saturation current effectively. It can be used to manufacture molded power inductors. The results showed that a well-distributed and high electrical resistance layer on the surfaces of the carbonyl iron powders can be obtained by the phosphating treatment using 2 wt% phosphoric acid. Based on the TEM results, a core-shell structure was successfully obtained and the phosphate shell was amorphous. To improve the compatibility between the iron powders and the polymer, the phosphated iron powders were also modified by using anionic surfactant, sodium stearate, and non-ionic surfactant, amino-silane respectively. The results showed that the fluidity, steric hindrance stability and abrasion resistance were promoted simultaneously by adding proper amount of sodium stearate. The addition of sodium stearate reduced the friction between the particles and the mold, which led to the density and magnetic properties were improved. On the other hand, the amino-silane modification can increase the compatibility between the phosphating iron powder and the polymer, and hence reducing the viscosities of the pastes composed of the phosphating iron powder and liquid epoxy resin and furthermore promoting the distribution of the air gap, rated current and power losses. The chemical bonding between the silane and epoxy can improve the tensile strength of the soft magnetic composites.

    摘要 I 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 前人研究與基礎理論 3 2-1 一體成形電感器 3 2-1-1 一體成形電感器簡介 3 2-1-2 電感之特性 4 2-1-3 電感之自我共振頻率 5 2-1-4 電感之感抗 5 2-1-5 電感之直流疊加特性 6 2-1-6 磁損耗 7 2-2 軟磁材料 11 2-2-1 鐵粉之種類 12 2-2-2 鐵粉芯包覆處理之研究進展 12 2-3 材料的腐蝕 15 2-3-1 腐蝕之型態 15 2-3-2 電動勢 18 2-4 化成皮膜 20 2-4-1 磷化皮膜之反應機制 20 2-4-2 磷化反應之動力學 22 2-4-3 磷化處理之步驟 23 2-4-4 金屬離子添加劑之影響 24 2-4-5 磷酸鹽皮膜包覆鐵粉芯研究進展 25 2-5 磨潤學 28 2-5-1 摩擦原理 28 2-5-2 磨耗機制 30 2-5-3 潤滑模式 32 2-5-4 固體潤滑劑之應用 34 2-6 添加劑之流變行為 35 2-6-1 懸浮液之分散機構 35 2-6-2 懸浮液之流變行為 37 2-6-3 界面活性劑之原理及分類 40 2-6-4 耦合劑之種類及其相關應用 40 2-6-5 環氧樹脂之反應機構及其特性 44 第三章 實驗步驟與方法 46 3-1 實驗藥品 46 3-1-1 起始原料 46 3-1-2 其它藥品 47 3-2 實驗流程 48 3-2-1 鐵粉磷酸鹽化成皮膜製備 48 3-2-2 添加硬脂酸鈉對磷化鐵粉表面改質之製備 49 3-2-3 添加矽烷耦合劑對磷化鐵粉表面改質製備 50 3-3 試片特性分析 51 3-3-1 振實密度分析 51 3-3-2 傅立葉轉換紅外線光譜儀(FTIR) 51 3-3-3 光學顯微鏡(OM) 52 3-3-4 掃描式電子顯微鏡(SEM) 52 3-3-5 穿透式電子顯微鏡(TEM) 52 3-3-6 X-ray螢光成分分析(XRF) 52 3-3-7 X-ray繞射相鑑定(XRD) 53 3-3-8 熱分析(TG/DTA) 53 3-3-9 電阻率分析 54 3-3-10 磁性質分析 54 3-3-11 直流疊加特性分析 54 3-3-12 磁損失分析(Power Losses analyzer) 55 3-3-13 流變行為分析 55 3-3-14 拉伸試驗分析 55 3-3-15 鹽霧試驗分析 56 第四章 結果與討論 58 4-1 磷酸鹽皮膜化成處理之研究 58 4-1-1 磷酸添加量對羰基鐵粉流動性之影響 58 4-1-2 磷酸鹽皮膜之微結構與成分分析 60 4-1-3 磷酸添加量對磷化鐵粉耐溫性之影響 64 4-1-4 磷酸添加量對磷化鐵粉電磁性質之影響 68 4-1-5 磷酸添加量對磷化鐵粉磁損失之影響 72 4-1-6 磷酸添加量對磷化鐵粉耐候性之影響 74 4-2 磷化鐵粉表面改質之研究 76 4-2-1 離子型界面活性劑對磷化鐵粉表面改質之研究 76 4-2-1-1 硬脂酸鈉添加量對磷化鐵粉表面改質之影響 76 4-2-1-2 硬脂酸鈉添加量對磷化鐵粉流動性之影響 78 4-2-1-3 硬脂酸鈉添加量對磷化鐵粉電磁性質之影響 82 4-2-1-4 硬脂酸鈉添加量對磷化鐵粉耐磨耗性之影響 87 4-2-1-5 硬脂酸鈉添加量對磷化鐵粉/環氧樹脂拉伸強度之影響 90 4-2-1-6 硬脂酸鈉添加量對磷化鐵粉磁損失之影響 92 4-2-2 非離子型界面活性劑對磷化鐵粉表面改質之研究 94 4-2-2-1 矽烷耦合劑添加量對磷化鐵粉預水解反應參數之探討 94 4-2-2-2 矽烷耦合劑添加量對磷化鐵粉表面吸附量之影響 98 4-2-2-3 矽烷耦合劑添加量對磷化鐵粉流變性之影響 101 4-2-2-4 矽烷耦合劑添加量對磷化鐵粉電磁性質之影響 104 4-2-2-5 環氧樹脂含量對胚體拉伸強度及直流疊加特性之影響 108 4-2-2-6 矽烷耦合劑添加量對磷化鐵粉磁損失之影響 111 4-2-3 界面活性劑表面改質之綜合討論 113 第五章 結論 115 參考文獻 116

    1.鄭明得,薄型大電流電感器鐵芯粉末調配之穩健最佳化設計,中國機械工程學會第二十六屆全國學術研討會論文集,2009年。
    2.柯文淞,晶片電感,晶片型電子陶瓷材料及元件技術,工業技術研究院,1993。
    3.呂秉軍,離子擴散對鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷共燒的影響,國立成功大學資源工程學系,碩士論文,2012年。
    4.方信喬,添加劑對錳鋅鐵氧磁體低損失最佳化之研究,大同大學材料科學研究所,碩士論文,2006年。
    5. P. Kollár , Z. Birčáková, J. Füzer, R. Bureš, M. Fáberová ,“Power loss separation in Fe-based composite materials,” Journal of Magnetism and Magnetic Materials, 327, 146-150, 2013.
    6.謝定洲,粗細鐵粉混合比例對壓粉磁蕊磁性質之影響,國立台灣科技大學材料科技研究所,碩士學位論文,2009年。
    7. H. Shokrollahi, K. Janghorban, “Soft magnetic composite materials(SMCs),” Journal of Materials Processing Technology, 189 (1-3), 1-12, 2007.
    8.汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,1994年。
    9. Y. Feng, Y. Li, T. Qiu, “Preparation and characterization of carbonyl iron/glass composite absorber as matched load for isolator,” Journal of Magnetism and Magnetic Materials, 324 (19), 3034-3039, 2012.
    10. Y.D. Liu, H.J. Choi, S.B. Choi, “Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 403, 133-138, 2012.
    11. Y. Qing, W. Zhou, S. Jia, F. Luo, D. Zhu, “Microwave electromagnetic property of SiO2-coated carbonyl iron particles with higher oxidation resistance,” Physica B:Condensed Matter, 406 (4), 777-780, 2011.
    12. S. Jia, F. Luo, Y. Qing, W. Zhou, D. Zhu, “Electroless plating preparation and microwave electromagnetic properties of Ni-coated carbonyl iron particle/epoxy coatings, ” Physica B:Condensed Matter, 405(17), 3611-3615, 2010.
    13. R. Shen, S.N. Shafrir, C. Miao, M. Wang, J.C. Lambropoulos, S.D. Jacobs, H. Yang, “Synthesis and corrosion study of zirconia-coated carbonyl iron particles,” Journal of Colloid and Interface Science, 342 (1), 49-56, 2010.
    14. M.A. Abshinova, N.E. Kazantseva, P. Sáha, I. Sapurina, J. Kovářová, J. Stejskal, “The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties,” Polymer Degradation and Stability, 93(10), 1826-1831, 2008.
    15.柯賢文,腐蝕及其防制第二版,全華圖書股份有限公司,2012年。
    16.林佩樺,雙層鍍層耐蝕性之研究,逢甲大學材料科學與工程學系,碩士論文,2014年。
    17.林奕宏,負溫度係數熱敏電阻電鍍保護層之製作,國立成功大學資源工程學系,碩士論文,2008年。
    18. T.S.N. Sankara Narayanan, “Surface pretreatment by phosphate conversion coatings-a review,” Reviews on Advanced Materials Science, 9, 130-177, 2005.
    19.賴文啟,鎂鋁合金錫酸鹽皮膜化成處理之研究,逢甲大學材料科學研究所,碩士論文,2003年。
    20.廖漢智,化成溫度及外加電位對磷酸錳皮膜性質之影響研究,國立成功大學材料科學及工程學系,碩士論文,2005。
    21. D.B. Freeman, “Phosphating and metal pre-treatment: a guide to modern processes and practice,” Woodhead-Faulkner Ltd, 1986.
    22. S.M. Tamborim Takeuchi, D.S. Azambuja, I. Costa, “Cerium conversion layer for improving the corrosion resistance of phosphated NdFeB magnets,” Surface and Coatings Technology, 201 (6), 3670-3675, 2006.
    23. D. Hawke, D.L. Albright, “A phosphate-permanganate conversion coating for magnesium,” Metal Finishing, 34-38, 1995.
    24. S. Tajima, T. Hattori, M. Kondoh, H. Kishimoto, M. Sugiyama, T. Kikko, “Properties of high-density magnetic composites fabricated from iron powder coated with a new type phosphate insulator,” IEEE Transactions on Magnetics, 41 (10), 3280-3282, 2005.
    25. A.H. Taghvaei, H. Shokrollahi, K. Janghorban, “Properties of iron-based soft magnetic composite with iron phosphate-silane insulation coating,” Journal of Alloys and Compounds, 481 (1-2), 681-686, 2009.
    26. A.H. Taghvaei, H. Shokrollahi, K. Janghorban, H. Abiri, “Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites,” Materials and Design, 30 (10), 3989-3995, 2009.
    27.H.R. Cha, H.T. Son, C.H. Yun, J.I. Cho, I.H. Oh, J.S. Lee, C.S. Kang, H.M. Kim, “Insulation and magnetic properties of iron powder coated by wet chemical method,” Materials Science Forum, 534-536, 1329-1323, 2007.
    28.許文正,油潤滑擦損磨耗微結構之觀察與模型建立,成功大學機械工程學系,碩士論文,2008年。
    29.游奎軒,銅纖維與碳化矽鬚晶添加對摩擦複合材磨潤性質之影響,國立成功大學材料科學及工程學系,碩士論文,2008年。
    30.姜禮銓,無電鍍Ni-P基自潤滑複合鍍膜發展及磨潤應用研究,國防大學理工學院動力及系統工程學系,碩士論文,2012年。
    31. I.M. Hutchings, “Tribology:friction and wear of engineering materials,” CRC Press, Boca Raton, 1992.
    32.I.L. Singer, H.M. Pollock, “Fundamental of friction : macroscopic and microscopic process ,” Kluwer Academic, Boston, 1992.
    33.K.G. Budinski, “Hardfacing III:the wear process,” Welding Design and Fabrication, 40-47, 1986.
    34.邱雲堯,機械製造,文京圖書有限公司,台北,1998。
    35.林榮盛,潤滑學,全華科技圖書股份有限公司,台北,1990年。
    36.陳世春,劉守一,塑膠材料潤滑性質,復漢出版社印行,1988年。
    37.朱秋龍,粉末冶金,中華民國粉末冶金協會,1991年。
    38. P. Hivart, J.P. Bricout, J. Oudin, “New real-time test for prediction of zinc phosphate/stearate coatings breakdown: optimal stearate settling parameters for steel billets in cold forging,” Tribology International, 25(1), 45-51, 1992.
    39. M. Gariety, G. Ngaile, T. Altan, “Evaluation of new cold forging lubricants without zinc phosphate precoat,” International journal of Machine Tools and Manufacture, 47 (3-4), 673-681, 2007.
    40. M.C.M. Farias, C.A.L. Santos, Z. Panossian, A. Sinatora, “Friction behavior of lubricated zinc phosphate coating,” Wear, 266 (7-8), 873-877, 2009.
    41. F.P. Bowden, D. Tabor, “The friction and lubrication of solids ,” Oxford University Press, New York, 2001.
    42.蔡兆宇,鈦酸酯耦合劑對有機溶劑系統中Co2Z鐵氧磁體分散性質影響之研究,國立成功大學資源工程學系,碩士論文,2003年。
    43.J.A. Lewis, “Colloidal processing of ceramics,” Journal of American Ceramics Society, 83(10), 2341-2359, 2000.
    44. R.M. Pashley, M.E. Karaman, “Applied colloid and surface chemistry,” Wiley, 2004.
    45.柯揚船,S.Peat,聚合物無機奈米複合材料,五南圖書,2004年。
    46.D.H. Napper, “Polymer Stabilization of colloidal disperdions,” Academic Press, London, 1-17, 1983.
    47.蘇佳琪,非離子聚合物插層電荷縮減蒙脫石漿料之穩定及流變性研究,國立成功大學資源工程學系,博士論文,2009年。
    48. R.J. Hunter , “Introduction to modern colloid science,” Oxford Science,1993.
    49.徐福啟,以鐵氧磁體/環氧樹酯複合材料製備埋入式電感之研究,國立成功大學資源工程學系,碩士論文,2009年。
    50.陳致宇,矽烷表面改質對二氧化矽奈米複合材料塗層性質之影響,國立成功大學資源工程學系,碩士論文,2007年。
    51.趙承琛,界面科學基礎,復文書局,74-118頁,1987。
    52. F.R. Shan, Z.M. Yu, M.Q. Wang, Y. Zhang, “Study on surface modification of nano-alumina with silicane coupling agent KH550,” Advanced Materials Research , 528, 263-266, 2012.
    53. H.I. Hsiang, C.C. Chen, J.Y. Tsai, “Dispersion of nonaqueous Co2Z ferrite powders with titanate coupling agent and poly(vinyl butyral),” Applied Surface Science, 245 (1-4), 252-259, 2005.
    54. C. Palencia, F. Rubio, C. Merino, J. Rubio, J.L. Oteo,“Study of the silanization process in CNFs: time, temperature, silane type and concentration influence,” Journal of Nano Research , 4, 33-43, 2008.
    55.Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, “Silane coupling agents used for natural fiber/ polymer composites: A review,” Composites: Part A, 41, 806-819, 2010.
    56. Y.J. Weng, R. Hou, D. Xie, J. Wang, N. Huang, “Covalent immobilization of heparin on anatase TiO2 films via chemical adsorbent phosphoric acid interface,” Key Engineering Materials , 330-332, 865-868, 2007.
    57. Y. Lu, H. Li ,H. Liu, “Study on electron beam curing of APTES functionalized MWNTs/ Epoxy composites,” Advanced Materials Research, 194-196, 1607-1610, 2011.
    58.林汝潔,矽偶合劑存在下環氧樹脂/二氧化矽混合體之研究,國立中央大學化學工程與材料工程研究所,碩士論文,2006年。
    59.M.M. Dias, H.J. Mozetic, J.S. Barboza, R.M. Martins , L. Pelegrini , L. Schaeffer, “Influence of resin type and content on electrical and magnetic properties of soft magnetic composites (SMCs),” Powder Technology, 237, 213-220, 2013.
    60. N. Muttik, C.B. Agee, F.M. McCubbin, W.A. McCutcheon, P.P. Provencio, L.P. Keller, A.R. Santos, C.K. Shearer, “Looking for a source of water in martian basaltic NWA 7034 ,” 45th Lunar and Planetary Science Conference, 2014.
    61.高文弘,周賢孟,界面化學,黎明經銷,新竹,1980年。
    62. H.A. Capelle, L.G. Britcher, G.E. Morris, “Sodium stearate adsorption onto titania pigment,” Journal of Colloid and Interface Science, 268 (2), 293-300, 2003.
    63.L. Ren,T. Yang, Y. Zhao, N. Zhao, “Preparation and characterization of APTES modified bioglass,” Key Engineering Materials, 368-372, 1215-1217, 2008.
    64.D.D. Herea, H. Chiriac, “One-step preparation and surface activation of magnetic iron oxide nanoparticles for bio-medical applications,” Optoelectronics and Advanced Materials-Rapid Communications, 2(9), 549-552, 2008.
    65.S. Yang, P. Yuan, H. He, Z. Qin, Q. Zhou, J.Zhu, D. Liu, “Effect of reaction temperature on grafting of γ-aminopropyl triethoxysilane (APTES) onto kaolinite,” Applied Clay Sciences, 62-63, 8-14, 2012.

    下載圖示 校內:2019-08-14公開
    校外:2019-08-14公開
    QR CODE