簡易檢索 / 詳目顯示

研究生: 王信雄
Wang, Hsin-Hsiung
論文名稱: 一個有效的離散餘弦轉換演算法應用於可攜式裝置之數位浮水印
Development of an Effective Discrete Cosine Transform Algorithm for Digital Watermarking in Portable Devices
指導教授: 楊世銘
Yang, Shih-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 70
中文關鍵詞: 浮水印系統可攜式裝置離散餘弦轉換
外文關鍵詞: discrete cosine transform, watermarking system, OMAP, energy modulation, Pocket PC, portable devices
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在即時的線上傳輸資料中,影像資訊是最常被讀者所使用的資料型態,由於取得容易、散播迅速,導致盜版問題、版權糾紛層出不窮,因此數位浮水印的架構之建立乃當務之急。目前各種的浮水印演算系統皆以桌上型PC作為設計基準,但卻很少針對日漸普遍的手持式裝置作設計。然而,在手持式裝置上的使用盜版軟體問題卻日漸嚴重,所以有鑑於此,本文設計出一套可實現於手持式裝置之浮水印系統,且所設計的浮水印數學架構具有一定的強健性、安全性與便利之特性。而在手持式裝置實現時,具有不錯的加密圖像品質及解密後辨認率高的浮水印圖像。此外,在國防方面之應用有重大影響,例如在資訊戰時,能保護己方的機密情資外流為首當其要,倘若不幸,情資被敵方截取後,亦希望不被敵方破解,因而浮水印系統提出之後,對於戰時情資保密的工作,提供了第二道的防護。
    本文提出一個改良之浮水印演算法,並利用TI OMAP處理器實現演算法及建立一個高強健性及高效能性的影像浮水印系統,此浮水印系統結合了中頻系數選取、可調式量化表的應用、改良式的離散餘弦轉換等,對於抵抗攻擊及效能上有顯著的提升。此外,還在目前的可攜式裝置Pocket PC系統上發展實作的浮水印系統,並對加密的資料作一般的JPEG壓縮、裁剪攻擊、影像處理…等操作,由實驗結果知其強健性及隱密性都是極為良好,PSNR及NC值皆在可接受的範圍。此浮水印演算法亦可應用於音訊浮水印平台,在音訊浮水印系統上,應用能量調變觀念嵌入浮水印位元流,再把位元流轉變成一般的浮水印圖片。在本文中有詳細討論各相關係數對於加密音訊的品質,並且對各種不同的音樂作加密處理,以驗証音訊浮水印系統。由實驗結果知其音訊的隱密性及強健性皆為良好,其SNR及BER值都很不錯。

    Image information is usually used in real-time transmission on internet. Because image information is easily obtained and quick dissemination from internet, the question of pirated editions and fakes are more and more serious. It is therefore very important to establish a digital watermarking system. Many watermarking systems are designed for desktops but few for portable devices. A robust, secure, and convenient digital watermarking system implemented on the portable device is proposed in this thesis. Implementation on portable devices shows that one can achieve good quality of watermarked image and high accuracy of the decrypted watermark. The personal portable devices with watermarking system can be applied to any soldier in the battlefield for immediate commands to decrease casualties and increase efficiency.
    This thesis proposes an efficient watermarking algorithm based on discrete cosine transform and implements the algorithm on TI OMAP processor. The algorithm is shown to reduce the multiplication and alter the data flow to fit the portable device characteristics. The highly robust and efficient watermarking system including the median frequency coefficients, the adaptive quantification table, and efficient discrete cosine transform is validated and shown efficient against JPEG compression, cutting attack, and image processing. The implementation results achieve acceptable PSNR and NC for robustness and security.
    In addition, the digital watermarking algorithm can be applied to the audio watermarking system, where the concept of energy modulation in spread spectrum can embed the bit stream of the watermark in the audio signals. The watermark can be obtained from the decrypted bit stream in the decrypting algorithm. The relationship of the parameters in the algorithm is discussed in detail and the implementation has good SNR and BER for the robustness and security.

    CONTENTS Page ABSTRACT i CONTENTS iii LIST OF TABLES v LIST OF FIGURES vi CHAPTER 1. INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Review 2 1.2.1 Digital image watermarking 2 1.2.2 Digital audio watermarking 3 1.3 Outline 5 2. DIGITAL WATERMARK OVERVIEW 6 2.1 Introduction 6 2.2 General Watermarking Concept 6 2.2.1 Watermarking requirements 7 2.2.2 Watermarking applications 8 2.3 General Invisible Watermarking 9 2.4 An Efficient Inverse Discrete Cosine Transform 13 2.5 Summary 14 3. DIGITAL IMAGE WATERMARKING SYSTEM 22 3.1 Introduction 22 3.2 Algorithm of Embedding and Decryption in Images 22 3.2.1 Watermark embedding 24 3.2.2 Watermark decryption 25 3.2.3 PSNR and NC 25 3.3 Implementation of the Image Watermark System 26 3.3.1 Development environment 26 3.3.2 Experimental results 28 3.4 Summary 29 4. DIGITAL AUDIO WATERMARKING SYSTEM 47 4.1 Introduction 47 4.2 Algorithm of Embedding and Decryption in Audios 47 4.2.1 Spread spectrum 47 4.2.2 Watermark embedding 50 4.2.3 Watermark decryption 52 4.2.4 Signal to noise ratio and bit error rate 52 4.3 Implementation and Verification 53 4.4 Summary 54 5. SUMMARY AND CONCLUSIONS 64 REFERENCES 66

    [1] D. Zheng, J. Zhao, W.J. Tam, and F. Speranza, ” Image Quality Measurement by Using Digital Watermarking,” Audio and Visual Environments and Their Applications, pp.65 – 70, 2003.
    [2] H. Lu, X. Shi, Y.Q. Shi, A.C. Kot, and L. Chen, “Watermark Embedding in DC Components of DCT for Binary Images,” Multimedia Signal Processing, pp.300 – 303, 2002.
    [3] Y. H. Choi, and T. S. Choi, “Robust Logo Embedding Technique for Copyright Protection”, IEEE Transactions on Consumer Electronics, pp.341 – 342, 2005.
    [4] X. M. Niu, Z. M. Lu, and S. H. Sun, “Digital Watermarking of Still Images with Gray-Level Digital Watermarks,” IEEE Transactions on Consumer Electronics, Vol. 46, No. 1, pp. 137-145, 2000.
    [5] S.D. Lin, S. C. Shie, and H. Y. Guo, “Improving the Robustness of DCT-Based Image Watermarking against JPEG Compression,” Consumer Electronics, 2005, pp.343 – 344, 2005.
    [6] M. Akio, and O. Akihiro, “Analysis of Watermarking Systems in the Frequency Domain and Its Application to Design of Robust Watermarking Systems,” 2001 International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, pp. 1969 -1972, 2001.
    [7] S. Jeong, K. Hong, and C. S. Won, “Dual Detection of Watermarks Embedded in the DCT Domain,” ELMAR, 2005. 47th International Symposium , pp.103 – 106, 2005.
    [8] K. C. Liu, and S. M. Yang, “Digital Image Encryption by Using Discrete Cosine Transform,” CSCA/AASRC/CIROC Joint Conferences Taiwan, 2002.
    [9] F. Baldo, F. Perez-Gonzalez, and S. Scalise, “Turbo Coding for Sample-level Watermarking in the DCT Domain,” 2001 International Conference on Image Processing, Vol. 3, pp. 1003 -1006, 2001.
    [10] F. H. Wang, J. S. Pan, and L.C. Jain, “Shadow Watermark Embedding System,” IEEE Transactions on Circuits and Systems, pp.4975 - 4978 Vol. 5, 2005.
    [11] K. Pai, K. Benkrid, and D. Crookes, “Embedded Reconfigurable DCT Architectures Using Adder-Based Distributed Arithmetic,” Computer Architecture for Machine Perception, pp.81 – 86, 2005.
    [12] H. Y. Liao, C. S. Lu, S. K. Huang, and C. J. Sze, “Cocktail Watermarking for Digital Image Protection,” IEEE Transactions on Multimedia, Vol.2, No.4, pp. 209-224, 2005.
    [13] P. Bao, and X. Ma, “Image Adaptive Watermarking Using Wavelet Domain Singular Value Decomposition,” IEEE Transactions on Circuits and Systems, Vol.15, No.1, pp. 96-102, 2005.
    [14] C. H. Chang, Z. Ye, and M. Zhang, “Fuzzy-ART Based Adaptive Digital Watermarking System,” IEEE Transactions on Circuits and Systems, Vol.15, No.1, pp. 65-81, 2005.
    [15] M. Ahourian, J. Zhu, and J. Jeorr, ” A Spatial and DCT-domain Composite Watermarking of Three-Dimensional Triangle Meshes,” IEEE Transactions on Audio and Visual Environments and Their Applications, pp.189 – 194, 2004
    [16] P. Bassia, I. Pitas, and N. Nikolaidis, “Robust Audio Watermarking in the Time Domain,” IEEE Transcations on Multimedia, Vol. 3, No. 2, pp. 232 -241, 2003.
    [17] W. N. Lie, and L. C. Chang, “Robust and High-quality Time-domain Audio Watermarking Subject to Psychoacoustic Masking,” IEEE International Symposium on Circuits and Systems, Vol. 2, pp. 45-48, 2001.
    [18] W. Foo, T. H. Yeo, and D. Y. Huang, “An Adaptive Audio Watermarking System,” Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology, Vol. 2, pp. 509-513, 2001.
    [19] K. Byeong-Seob, R. Nishimura, and Y. Suzuki, “Time-spread Echo Method for Digital Audio Watermarking Using PN Sequences,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp. 2001-2004, 2002.
    [20] S. Seungwon, K. Oanjin, K. Jongweon, and C. Jonguk, “A Robust Audio Watermarking Algorithm Using Pitch Scaling,” 14th IEEE International Conference on Digital Signal Processing, Vol. 2, pp. 701-704, 2002.
    [21] M. F. Mansour, and A. H. Tewfik, “Audio Watermarking by Time-scale Modification,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, pp. 1353-1356, 2001.
    [22] L. Boney, A. H. Tewfik, and K. N. Hamdy, “Digital Watermarks for Audio Signals,” IEEE International Conference on Multimedia Computing and Systems, pp. 473-480, 1996.
    [23] S. Jong and W. H. Jin, “Audio Watermarking for Copyright Protection of Digital Audio Data,” Electronics Letters, Vol. 37, No. 1, pp. 60-61, 2001.
    [24] S. K. Lee, and Y. S. Ho, “Digital Audio Watermarking in the Cepstrum Domain,” IEEE Transactions on Consumer Electronics, Vol. 46, No. 3, pp. 744-750, 2000.
    [25] C. T. Hsieh, and P. Y. Sou, “Blind Cepstrum Domain Audio Watermarking Based on Time Energy Features,” 14th IEEE International Conference on Digital Signal Processing, Vol. 2, pp. 705-708, 2002.
    [26] K. Yeo, and, H. J. Kim, “Modified Patchwork Algorithm: A Novel Audio Watermarking Scheme,” IEEE Transactions on Speech and Audio Processing, Vol. 11, No. 4, pp. 381-386, 2003.
    [27] P. Arttameeyanant, P. Kumhom, and K. Chamnongthai, “Audio Watermarking for Internet,” IEEE International Conference on Information Technology: Coding and Computing, pp. 237-242, 2001.
    [28] W. Li, X. Li, and P. Lu, “A Novel Feature-based Robust Audio Watermarking for Copyright Protection,” IEEE International Conference on Information Technology: Coding and Computing, pp. 554-558, 2003.
    [29] F. S. Wei, X. Feng, M. Li, “A Blind Audio Watermarking Scheme Using Peak Point Extraction,” Circuits and Systems, pp.4409 - 4412 Vol. 5, 2005.
    [30] J. Huang, Y. Wang, and Y. Q. Shi, “A Blind Audio Watermarking Algorithm with Self-synchronization,” IEEE International Symposium on Circuits and Systems, Vol. 3, pp. 627-630, 2002.
    [31] R. G. van Schyndel, A. Z. Tirkel, and C. F. Osborne, “A Digital Watermark,” Proceedings of IEEE International Conference on Image Processing, Vol. 1, pp. 86-90. 1994
    [32] F. A. McGovern, R. F. Woods, and M.Yan, “Novel VLSI Implementation of (8x8) Point 2D DCT”, Electronics Letters, Vol. 30, Issue 8, pp. 624-626, 1994.
    [33] C. S. Tsai, C. C. Chang, T. S. Chen, and M. H. Chen, “Embedding Robust Gray-Level Watermarks in an Image Using Discrete Cosine Transformation,” Distributed Multimedia Database Techniques and Applications, pp. 206 – 223, 2002.
    [34] L. Kamstra, and H.J.A.M. Heijmans, ”Reversible Data Embedding Into Images Using Wavelet Techniques and Sorting”, IEEE Transactions on Image Processing, Vol. 14, Issue 12, pp. 2082 – 2090, 2005.
    [35] R. Ansari, H. Malik, and A. Khokhar, “DATA-HIDING IN AUDIO USING FREQUENCY-SELECTIVE PHASE ALTERATION”, IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 5, pp. 389-392, 2004.
    [36] A. Takahashi, R. Nishimura, and Y. Suzuki, “Multiple Watermarks for Stereo Audio Signals Using Phase-Modulation Techniques”, IEEE Transactions on Signal Processing, Vol. 53, Issue 2, pp.806 – 815, 2005.
    [37] B. S. Ko, R. Nishimura, and Y. Suzuki, “Time-Spread Echo Method for Digital Audio Watermarking”, IEEE Transactions on Multimedia, Vol. 7, Issue 2, pp. 212 – 221, 2005.
    [38] Z. Liu, and A. Inoue,” Audio Watermarking Techniques Using Sinusoidal Patterns Based on Pseudorandom Sequences”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, Issue 8, pp. 801 – 812, 2003.
    [39] D. Kirovski and H. S. Malvar, “Spread-Spectrum Watermarking of Audio Signals”, IEEE Transactions on Signal Processing, Vol. 51, Issue 4, pp. 1020 – 1033, 2003.

    下載圖示 校內:2007-07-17公開
    校外:2007-07-17公開
    QR CODE