簡易檢索 / 詳目顯示

研究生: 李易霖
LI, YI-LIN
論文名稱: 基於深共熔溶劑之廢太陽能模組銀金屬回收與資源循環
Recovery of Silver Metal and Resource Recycling from End-of-Life Solar Modules Using Deep Eutectic Solvents
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 134
中文關鍵詞: 深共熔溶劑(DES)銀金屬回收太陽能模組響應曲面法(RSM)資源循環
外文關鍵詞: deep eutectic solvent, silver leaching, photovoltaic recycling, resource recovery, green metallurgy, RSM
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii 致謝xiii 目錄 xv 表目錄 xviii 圖目錄xix 第一章 緒論 1 1.1 前言1 1.2 研究動機與目的 3 第二章 文獻回顧4 2.1 太陽能模組概述 4 2.1.1 矽基太陽能模組電池構造及工作原理 5 2.1.2 矽基太陽能模組發展現狀與廢棄物管理 7 2.1.3 矽基太陽能模組之金屬資源現況11 2.2 矽基太陽能模組的資源化利用技術15 2.2.1 預處理與EVA樹脂移除17 2.2.2 矽材料與貴金屬之回收 21 2.3 金屬萃取技術與溶劑冶金簡介25 2.3.1 深共熔溶劑之物理化學特性及分類 26 2.3.2 深共熔溶劑在濕法冶金中應用 32 2.3.3 金屬回收機制 34 2.4 太陽能模組銀回收理論37 2.4.1 預處理與浸漬之理論基礎 37 2.4.2 響應曲面法(RSM)理論基礎 38 2.4.3 金屬萃取與沉澱之理論基礎 47 第三章 研究材料設備與方法 48 3.1 研究材料與設備 48 3.1.1 樣品來源及選取標準 48 3.1.2 化學試劑 49 3.1.3 設備及分析儀器50 3.2 研究架構 53 3.3 研究方法與流程 55 3.3.1 材料準備與特性分析 55 3.3.2 深共熔溶劑(DES)溶劑製備及特徵分析 56 3.3.3 提升有價金屬浸漬與資源化效率 57 3.3.4 銀金屬回收與深共熔溶劑(DES)再利用 62 第四章 結果與討論 63 4.1 廢矽基太陽能模組之預處理與特性分析 63 4.1.1 EVA 樹脂去除與材料分離63 4.1.2 模組之預處理及重量分析67 4.1.3 矽基電池片的表面與成分分析 68 4.2 深共熔溶劑製備及穩定性分析 70 4.2.1 深共熔溶劑的製備 70 4.2.2 深共熔溶劑結構與穩定性評估 71 4.3 銀浸出效率最佳化分析 76 4.3.1 銀浸出影響因子探討 76 4.3.2 銀浸出數據建模與適用性評估 (RSM/回歸模型)82 4.3.3 最佳化銀浸出條件分析與模型預測86 4.3.4 回收銀晶相與組成特徵分析90 4.3.5 銀溶出機制解析:配位模式與反應途徑 91 4.4 DES 溶劑穩定性與再利用性能92 4.4.1 DES之循環使用評估與穩定性分析 92 4.4.2 DES應用於銀金屬浸出過程建模與評估 94 第五章 結論與建議 95 5.1 結論 95 5.2 建議 96 參考文獻 97

    [1] A. O. M. Maka, T. Ghalut, and E. Elsaye, "The pathway towards decarbonisation and net-zero emissions by 2050: The role of solar energy technology," Green Technologies and Sustainability, vol. 2, no. 3, p. 100107, 2024/09/01/ 2024, doi: https://doi.org/10.1016/j.grets.2024.100107.
    [2] I. Irena, "End-of-life management: solar photovoltaic panels," International renewable energy agency and international energy agency photovoltaic power systems, 2016.
    [3] 林茂文, "臺灣 2050 淨零排放路徑及策略之綜析," 石油季刊, vol. 58, no. 2, pp. 1-39, 2022.
    [4] R. Deng, N. L. Chang, Z. Ouyang, and C. M. Chong, "A techno-economic review of silicon photovoltaic module recycling," Renewable and Sustainable Energy Reviews, vol. 109, pp. 532-550, 2019.
    [5] A. Czajkowski, A. Wajda, N. Poranek, S. Bhadoria, and L. Remiorz, "Prediction of the market of end-of-life photovoltaic panels in the context of common EU management system," Energies, vol. 16, no. 1, p. 284, 2022.
    [6] Y. Xu, J. Li, Q. Tan, A. L. Peters, and C. Yang, "Global status of recycling waste solar panels: A review," Waste Management, vol. 75, pp. 450-458, 2018/05/01/ 2018, doi: https://doi.org/10.1016/j.wasman.2018.01.036.
    [7] J. Wang, Y. Feng, and Y. He, "The research progress on recycling and resource utilization of waste crystalline silicon photovoltaic modules," Solar Energy Materials and Solar Cells, vol. 270, p. 112804, 2024/06/15/ 2024, doi: https://doi.org/10.1016/j.solmat.2024.112804.
    [8] G. Ansanelli, G. Fiorentino, M. Tammaro, and A. Zucaro, "A life cycle assessment of a recovery process from end-of-life photovoltaic panels," Applied Energy, vol. 290, p. 116727, 2021.
    [9] H. Sverdrup, D. Koca, and K. V. Ragnarsdottir, "Investigating the sustainability of the global silver supply, reserves, stocks in society and market price using different approaches," Resources, Conservation and Recycling, vol. 83, pp. 121-140, 2014/02/01/ 2014, doi: https://doi.org/10.1016/j.resconrec.2013.12.008.
    [10] P. Dias, S. Javimczik, M. Benevit, H. Veit, and A. M. Bernardes, "Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules," Waste Management, vol. 57, pp. 220-225, 2016/11/01/ 2016, doi: https://doi.org/10.1016/j.wasman.2016.03.016.
    [11] W. Li and T. Adachi, "Evaluation of long-term silver supply shortage for c-Si PV under different technological scenarios," Natural Resource Modeling, vol. 32, no. 1, p. e12176, 2019/02/01 2019, doi: https://doi.org/10.1111/nrm.12176.
    [12] C. C. Farrell et al., "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, vol. 128, p. 109911, 2020/08/01/ 2020, doi: https://doi.org/10.1016/j.rser.2020.109911.
    [13] K. J. Schulz, Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Geological Survey, 2017.
    [14] S. R. Yashas, E. B. Ruck, H. Demissie, N. Manor-Korin, and Y. Gendel, "Catalytic recovery of metals from end-of-life polycrystalline silicon photovoltaic cells: Experimental insights into silver recovery," Waste Management, vol. 171, pp. 184-194, 2023/11/01/ 2023, doi: https://doi.org/10.1016/j.wasman.2023.08.038.
    [15] G. Panthi, R. Bajagain, Y.-J. An, and S.-W. Jeong, "Leaching potential of chemical species from real perovskite and silicon solar cells," Process Safety and Environmental Protection, vol. 149, pp. 115-122, 2021/05/01/ 2021, doi: https://doi.org/10.1016/j.psep.2020.10.035.
    [16] M. I. Martín, I. García-Díaz, and F. A. López, "Properties and perspective of using deep eutectic solvents for hydrometallurgy metal recovery," Minerals Engineering, vol. 203, p. 108306, 2023/11/01/ 2023, doi: https://doi.org/10.1016/j.mineng.2023.108306.
    [17] R. Deng, M. Gao, B. Zhang, and Q. Zhang, "Solvent-Mediated Synthesis of Functional Powder Materials from Deep Eutectic Solvents for Energy Storage and Conversion: A Review," Advanced Energy Materials, vol. 14, no. 8, p. 2303707, 2024/02/01 2024, doi: https://doi.org/10.1002/aenm.202303707.
    [18] 方俊德, "台灣淨零碳排路徑初探," (in 繁體中文), 臺灣經濟研究月刊, vol. 46, no. 1, pp. 13-20, 2023, doi: 10.29656/TERM.202301_46(1).0003.
    [19] 經濟部能源署. "再生能源發電量與裝置容量統計," 台灣能源資訊平台, 2024. [線上資料]. ." Available: https://www.moeaboe.gov.tw. (accessed.
    [20] P. G. V. Sampaio and M. O. A. González, "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, vol. 74, pp. 590-601, 2017/07/01/ 2017, doi: https://doi.org/10.1016/j.rser.2017.02.081.
    [21] C. Ballif, F.-J. Haug, M. Boccard, P. J. Verlinden, and G. Hahn, "Status and perspectives of crystalline silicon photovoltaics in research and industry," Nature Reviews Materials, vol. 7, no. 8, pp. 597-616, 2022/08/01 2022, doi: 10.1038/s41578-022-00423-2.
    [22] H. K. Trivedi, A. Meshram, and R. Gupta, "Recycling of photovoltaic modules for recovery and repurposing of materials," Journal of Environmental Chemical Engineering, vol. 11, no. 2, p. 109501, 2023/04/01/ 2023, doi: https://doi.org/10.1016/j.jece.2023.109501.
    [23] R. Vinayagamoorthi et al., "Recycling of end of life photovoltaic solar panels and recovery of valuable components: A comprehensive review and experimental validation," Journal of Environmental Chemical Engineering, vol. 12, no. 1, p. 111715, 2024/02/01/ 2024, doi: https://doi.org/10.1016/j.jece.2023.111715.
    [24] Chitra, D. Sah, K. Lodhi, C. Kant, P. Saini, and S. Kumar, "Structural composition and thermal stability of extracted EVA from silicon solar modules waste," Solar Energy, vol. 211, pp. 74-81, 2020/11/15/ 2020, doi: https://doi.org/10.1016/j.solener.2020.09.039.
    [25] A. K. Schnatmann, F. Schoden, and E. Schwenzfeier-Hellkamp, "Sustainable PV Module Design—Review of State-of-the-Art Encapsulation Methods," Sustainability, vol. 14, no. 16, doi: 10.3390/su14169971.
    [26] K. Bilen and İ. Erdoğan, "Effects of cooling on performance of photovoltaic/thermal (PV/T) solar panels: A comprehensive review," Solar Energy, vol. 262, p. 111829, 2023/09/15/ 2023, doi: https://doi.org/10.1016/j.solener.2023.111829.
    [27] I. S. Amiri and M. Ariannejad, Introducing CTS (Copper-Tin-Sulphide) as a Solar Cell by Using Solar Cell Capacitance Simulator (SCAPS). Springer, 2019.
    [28] A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, "Degradations of silicon photovoltaic modules: A literature review," Solar Energy, vol. 96, pp. 140-151, 2013/10/01/ 2013, doi: https://doi.org/10.1016/j.solener.2013.07.005.
    [29] H. Wang, A. Jasim, and X. Chen, "Energy harvesting technologies in roadway and bridge for different applications–A comprehensive review," Applied energy, vol. 212, pp. 1083-1094, 2018.
    [30] M. Tao et al., "Major challenges and opportunities in silicon solar module recycling," Progress in Photovoltaics: Research and Applications, vol. 28, no. 10, pp. 1077-1088, 2020, doi: https://doi.org/10.1002/pip.3316.
    [31] S. Bouckaert et al., "Net zero by 2050: A roadmap for the global energy sector," 2021.
    [32] S. Chandel, M. N. Naik, V. Sharma, and R. Chandel, "Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India," Renewable Energy, vol. 78, pp. 193-202, 2015.
    [33] M. Aghaei et al., "Review of degradation and failure phenomena in photovoltaic modules," Renewable and Sustainable Energy Reviews, vol. 159, p. 112160, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.rser.2022.112160.
    [34] M. Calì, B. Hajji, G. Nitto, and A. Acri, "The design value for recycling end-of-life photovoltaic panels," Applied Sciences, vol. 12, no. 18, p. 9092, 2022.
    [35] L. Dobrzański, A. Drygała, M. Giedroć, and M. Macek, "Monocrystalline silicon solar cells applied in photovoltaic system," Journal of achievements in materials and manufacturing engineering, vol. 53, no. 1, pp. 7-13, 2012.
    [36] M. Gul, Y. Kotak, and T. Muneer, "Review on recent trend of solar photovoltaic technology," Energy Exploration & Exploitation, vol. 34, no. 4, pp. 485-526, 2016/07/01 2016, doi: 10.1177/0144598716650552.
    [37] S. Preet and S. T. Smith, "A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook," Journal of Cleaner Production, vol. 448, p. 141661, 2024/04/05/ 2024, doi: https://doi.org/10.1016/j.jclepro.2024.141661.
    [38] C. E. L. Latunussa, F. Ardente, G. A. Blengini, and L. Mancini, "Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels," Solar Energy Materials and Solar Cells, vol. 156, pp. 101-111, 2016/11/01/ 2016, doi: https://doi.org/10.1016/j.solmat.2016.03.020.
    [39] P. M. Tembo and V. Subramanian, "Current trends in silicon-based photovoltaic recycling: A technology, assessment, and policy review," Solar Energy, vol. 259, pp. 137-150, 2023/07/15/ 2023, doi: https://doi.org/10.1016/j.solener.2023.05.009.
    [40] M. S. Chowdhury et al., "An overview of solar photovoltaic panels’ end-of-life material recycling," Energy Strategy Reviews, vol. 27, p. 100431, 2020.
    [41] A. Ali, S. A. Malik, M. Shafiullah, M. Z. Malik, and M. H. Zahir, "Policies and regulations for solar photovoltaic end-of-life waste management: Insights from China and the USA," Chemosphere, vol. 340, p. 139840, 2023.
    [42] A. Domínguez and R. Geyer, "Photovoltaic waste assessment in Mexico," Resources, Conservation and Recycling, vol. 127, pp. 29-41, 2017.
    [43] S. Baldwin et al., "Quadrennial technology review: an assessment of energy technologies and research opportunities," US Department of Energy: Washington, DC, USA, 2015.
    [44] H. Zhang, Z. Yu, C. Zhu, R. Yang, B. Yan, and G. Jiang, "Green or not? Environmental challenges from photovoltaic technology," Environmental Pollution, vol. 320, p. 121066, 2023.
    [45] C. Hagelüken and D. Goldmann, "Recycling and circular economy—towards a closed loop for metals in emerging clean technologies," Mineral Economics, vol. 35, no. 3, pp. 539-562, 2022/12/01 2022, doi: 10.1007/s13563-022-00319-1.
    [46] N. Ding, F. Gao, Z. Wang, and X. Gong, "Comparative analysis of primary aluminum and recycled aluminum on energy consumption and greenhouse gas emission," The Chinese Journal of Nonferrous Metals, vol. 22, no. 10, pp. 2908-2915, 2012.
    [47] S. Riahi, J. A. Mckenzie, S. Sandhu, and P. Majewski, "Towards net zero emissions, recovered silicon from recycling PV waste panels for silicon carbide crystal production," Sustainable Materials and Technologies, vol. 36, p. e00646, 2023.
    [48] F. Pagnanelli et al., "Solvent versus thermal treatment for glass recovery from end of life photovoltaic panels: Environmental and economic assessment," Journal of Environmental Management, vol. 248, p. 109313, 2019/10/15/ 2019, doi: https://doi.org/10.1016/j.jenvman.2019.109313.
    [49] R. Deng, Y. Zhuo, and Y. Shen, "Recent progress in silicon photovoltaic module recycling processes," Resources, Conservation and Recycling, vol. 187, p. 106612, 2022/12/01/ 2022, doi: https://doi.org/10.1016/j.resconrec.2022.106612.
    [50] Ç. Gönen and E. Kaplanoğlu, "Environmental and economic evaluation of solar panel wastes recycling," Waste Management & Research, vol. 37, no. 4, pp. 412-418, 2019.
    [51] V. Fiandra, L. Sannino, C. Andreozzi, and G. Graditi, "End-of-life of silicon PV panels: A sustainable materials recovery process," Waste Management, vol. 84, pp. 91-101, 2019/02/01/ 2019, doi: https://doi.org/10.1016/j.wasman.2018.11.035.
    [52] A. Kuczyńska-Łażewska, E. Klugmann-Radziemska, Z. Sobczak, and T. Klimczuk, "Recovery of silver metallization from damaged silicon cells," Solar Energy Materials and Solar Cells, vol. 176, pp. 190-195, 2018.
    [53] B. Hallam et al., "The silver learning curve for photovoltaics and projected silver demand for net-zero emissions by 2050," Progress in Photovoltaics: Research and Applications, vol. 31, no. 6, pp. 598-606, 2023/06/01 2023, doi: https://doi.org/10.1002/pip.3661.
    [54] T. W. Purcell and J. J. Peters, "Sources of silver in the environment," Environmental Toxicology and Chemistry, vol. 17, no. 4, pp. 539-546, 1998/04/01 1998, doi: https://doi.org/10.1002/etc.5620170404.
    [55] D. Strachala, J. Hylský, J. Vaněk, G. Fafilek, and K. Jandová, "Methods for recycling photovoltaic modules and their impact on environment and raw material extraction," Acta Montanistica Slovaca, vol. 22, no. 3, 2017.
    [56] C. Zhang et al., "Recovery of silver from crystal silicon solar panels in Self-Synthesized choline Chloride-Urea solvents system," Waste Management, vol. 150, pp. 280-289, 2022/08/01/ 2022, doi: https://doi.org/10.1016/j.wasman.2022.07.003.
    [57] W. Li, B. Liu, S. Wang, F. Jiao, W. Qin, and W. Liu, "Short-process leaching and kinetic behaviour of aluminium and silver from waste photovoltaic modules," Chemical Engineering Journal, vol. 495, p. 153455, 2024/09/01/ 2024, doi: https://doi.org/10.1016/j.cej.2024.153455.
    [58] J. Tian, D. Wu, S. Li, W. Ma, and R. Wang, "Effect of process variables on leaching behavior and kinetics of silver element from waste photovoltaic modules," Separation and Purification Technology, vol. 335, p. 126062, 2024/05/05/ 2024, doi: https://doi.org/10.1016/j.seppur.2023.126062.
    [59] R. Ayres, "The life‐cycle of chlorine, part I: Chlorine production and the chlorine‐mercury connection," Journal of Industrial Ecology, vol. 1, no. 1, pp. 81-94, 1997.
    [60] J. Kirchherr, D. Reike, and M. Hekkert, "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation and Recycling, vol. 127, pp. 221-232, 2017/12/01/ 2017, doi: https://doi.org/10.1016/j.resconrec.2017.09.005.
    [61] M. Tao, T. Chen, N. Click, and R. Adcock, "Recent progress and future prospects of silicon solar module recycling," Current Opinion in Green and Sustainable Chemistry, vol. 44, p. 100863, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.cogsc.2023.100863.
    [62] M. F. Azeumo, C. Germana, N. M. Ippolito, M. Franco, P. Luigi, and S. Settimio, "Photovoltaic module recycling, a physical and a chemical recovery process," Solar Energy Materials and Solar Cells, vol. 193, pp. 314-319, 2019/05/01/ 2019, doi: https://doi.org/10.1016/j.solmat.2019.01.035.
    [63] P. Dias, L. Schmidt, L. B. Gomes, A. Bettanin, H. Veit, and A. M. Bernardes, "Recycling waste crystalline silicon photovoltaic modules by electrostatic separation," Journal of Sustainable Metallurgy, vol. 4, pp. 176-186, 2018.
    [64] S. Kang, S. Yoo, J. Lee, B. Boo, and H. Ryu, "Experimental investigations for recycling of silicon and glass from waste photovoltaic modules," Renewable Energy, vol. 47, pp. 152-159, 2012/11/01/ 2012, doi: https://doi.org/10.1016/j.renene.2012.04.030.
    [65] P. Tembo, M. Heninger, and V. Subramanian, "An investigation of the recovery of silicon photovoltaic cells by application of an organic solvent method," ECS Journal of Solid State Science and Technology, vol. 10, no. 2, p. 025001, 2021.
    [66] S. Pang et al., "Enhanced separation of different layers in photovoltaic panel by microwave field," Solar Energy Materials and Solar Cells, vol. 230, p. 111213, 2021/09/15/ 2021, doi: https://doi.org/10.1016/j.solmat.2021.111213.
    [67] W. S. Chen, Y. J. Chen, and Y. A. Chen, "The application of organic solvents and thermal process for eliminating EVA resin layer from waste photovoltaic modules," in IOP Conference Series: Earth and Environmental Science, 2019, vol. 291, no. 1: IOP Publishing, p. 012012.
    [68] C. Farrell et al., "Pyrolysis kinetic modeling of a poly (ethylene-co-vinyl acetate) encapsulant found in waste photovoltaic modules," Industrial & Engineering Chemistry Research, vol. 60, no. 37, pp. 13492-13504, 2021.
    [69] P. Dias, S. Javimczik, M. Benevit, and H. Veit, "Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules," Waste Management, vol. 60, pp. 716-722, 2017/02/01/ 2017, doi: https://doi.org/10.1016/j.wasman.2016.08.036.
    [70] Y. Feng, Y. He, G. Zhang, S. Wang, N. Wei, and T. Zhang, "A promising method for the liberation and separation of solar cells from damaged crystalline silicon photovoltaic modules," Solar Energy Materials and Solar Cells, vol. 262, p. 112553, 2023/10/15/ 2023, doi: https://doi.org/10.1016/j.solmat.2023.112553.
    [71] T. Dobra, D. Vollprecht, and R. Pomberger, "Thermal delamination of end-of-life crystalline silicon photovoltaic modules," Waste Management & Research, vol. 40, no. 1, pp. 96-103, 2022/01/01 2021, doi: 10.1177/0734242X211038184.
    [72] X. Xu, D. Lai, G. Wang, and Y. Wang, "Nondestructive silicon wafer recovery by a novel method of solvothermal swelling coupled with thermal decomposition," Chemical Engineering Journal, vol. 418, p. 129457, 2021/08/15/ 2021, doi: https://doi.org/10.1016/j.cej.2021.129457.
    [73] G. R. T. Jenkin et al., "The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals," Minerals Engineering, vol. 87, pp. 18-24, 2016/03/01/ 2016, doi: https://doi.org/10.1016/j.mineng.2015.09.026.
    [74] N. Eshraghi et al., "Recovery of nano-structured silicon from end-of-life photovoltaic wafers with value-added applications in lithium-ion battery," ACS Sustainable Chemistry & Engineering, vol. 8, no. 15, pp. 5868-5879, 2020.
    [75] C. Zhang et al., "Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes," Waste Management, vol. 135, pp. 182-189, 2021.
    [76] Y. Lin et al., "Structure and conductivity enhanced treble-shelled porous silicon as an anode for high-performance lithium-ion batteries," RSC advances, vol. 9, no. 61, pp. 35392-35400, 2019.
    [77] X. Xu, D. Lai, W. Wang, and Y. Wang, "A systematically integrated recycling and upgrading technology for waste crystalline silicon photovoltaic module," Resources, Conservation and Recycling, vol. 182, p. 106284, 2022/07/01/ 2022, doi: https://doi.org/10.1016/j.resconrec.2022.106284.
    [78] Y. K. Yi, H. S. Kim, T. Tran, S. K. Hong, and M. J. Kim, "Recovering valuable metals from recycled photovoltaic modules," Journal of the Air & Waste Management Association, vol. 64, no. 7, pp. 797-807, 2014/07/03 2014, doi: 10.1080/10962247.2014.891540.
    [79] S. Yousef, M. Tatariants, J. Denafas, V. Makarevicius, S.-I. Lukošiūtė, and J. Kruopienė, "Sustainable industrial technology for recovery of Al nanocrystals, Si micro-particles and Ag from solar cell wafer production waste," Solar Energy Materials and Solar Cells, vol. 191, pp. 493-501, 2019/03/01/ 2019, doi: https://doi.org/10.1016/j.solmat.2018.12.008.
    [80] T.-Y. Wang, J.-C. Hsiao, and C.-H. Du, "Recycling of materials from silicon base solar cell module," in 2012 38th IEEE Photovoltaic Specialists Conference, 2012: IEEE, pp. 002355-002358.
    [81] I. Riech et al., "Experimental methodology for the separation materials in the recycling process of silicon photovoltaic panels," Materials, vol. 14, no. 3, p. 581, 2021.
    [82] M. Luo et al., "A comprehensive hydrometallurgical recycling approach for the environmental impact mitigation of EoL solar cells," Journal of Environmental Chemical Engineering, vol. 9, no. 6, p. 106830, 2021/12/01/ 2021, doi: https://doi.org/10.1016/j.jece.2021.106830.
    [83] J. Shin, J. Park, and N. Park, "A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers," Solar Energy Materials and Solar Cells, vol. 162, pp. 1-6, 2017/04/01/ 2017, doi: https://doi.org/10.1016/j.solmat.2016.12.038.
    [84] L. Punathil, K. Mohanasundaram, K. S. Tamilselavan, R. Sathyamurthy, and A. J. Chamkha, "Recovery of Pure Silicon and Other Materials from Disposed Solar Cells," International Journal of Photoenergy, vol. 2021, no. 1, p. 5530213, 2021/01/01 2021, doi: https://doi.org/10.1155/2021/5530213.
    [85] N. Wongnaree, W. Kritsarikun, N. Ma-ud, C. Kansomket, T. Udomphol, and S. Khumkoa, "Recovery of silver from solar panel waste: an experimental study," in Materials Science Forum, 2020, vol. 1009: Trans Tech Publ, pp. 137-142.
    [86] V. Savvilotidou and E. Gidarakos, "Pre-concentration and recovery of silver and indium from crystalline silicon and copper indium selenide photovoltaic panels," Journal of Cleaner Production, vol. 250, p. 119440, 2020/03/20/ 2020, doi: https://doi.org/10.1016/j.jclepro.2019.119440.
    [87] C. Modrzynski, L. Blaesing, S. Hippmann, M. Bertau, J. Z. Bloh, and C. Weidlich, "Electrochemical Recycling of Photovoltaic Modules to Recover Metals and Silicon Wafers," Chemie Ingenieur Technik, vol. 93, no. 11, pp. 1851-1858, 2021/11/01 2021, doi: https://doi.org/10.1002/cite.202100105.
    [88] J.-K. Lee, J.-S. Lee, Y.-S. Ahn, and G.-H. Kang, "Effect of current density on morphology of silver thin film recovered from crystalline silicon solar cell by electrochemical process," Thin Solid Films, vol. 663, pp. 143-147, 2018/10/01/ 2018, doi: https://doi.org/10.1016/j.tsf.2018.08.021.
    [89] D. Sah, Chitra, and S. Kumar, "Recovery and analysis of valuable materials from a discarded crystalline silicon solar module," Solar Energy Materials and Solar Cells, vol. 246, p. 111908, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.solmat.2022.111908.
    [90] C.-H. Lee, C.-E. Hung, S.-L. Tsai, S. R. Popuri, and C.-H. Liao, "Resource recovery of scrap silicon solar battery cell," Waste Management & Research, vol. 31, no. 5, pp. 518-524, 2013/05/01 2013, doi: 10.1177/0734242X13479433.
    [91] L. S. S. de Oliveira, M. Lima, L. Yamane, and R. R. Siman, "Silver recovery from end-of-life photovoltaic panels," Detritus, vol. 10, pp. 62-74, 2020.
    [92] S. Syed, "Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling," Waste Management, vol. 50, pp. 234-256, 2016/04/01/ 2016, doi: https://doi.org/10.1016/j.wasman.2016.02.006.
    [93] J.-K. Lee, J.-S. Lee, Y.-S. Ahn, and G.-H. Kang, "Efficient recovery of silver from crystalline silicon solar cells by controlling the viscosity of electrolyte solvent in an electrochemical process," Applied Sciences, vol. 8, no. 11, p. 2131, 2018.
    [94] A. J. Whitworth et al., "Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes," Minerals Engineering, vol. 182, p. 107537, 2022/05/31/ 2022, doi: https://doi.org/10.1016/j.mineng.2022.107537.
    [95] E. M. Iannicelli-Zubiani, M. I. Giani, F. Recanati, G. Dotelli, S. Puricelli, and C. Cristiani, "Environmental impacts of a hydrometallurgical process for electronic waste treatment: A life cycle assessment case study," Journal of Cleaner Production, vol. 140, pp. 1204-1216, 2017.
    [96] K. Binnemans and P. T. Jones, "Solvometallurgy: an emerging branch of extractive metallurgy," Journal of Sustainable Metallurgy, vol. 3, pp. 570-600, 2017.
    [97] D. Yu, Z. Xue, and T. Mu, "Eutectics: formation, properties, and applications," Chemical Society Reviews, vol. 50, no. 15, pp. 8596-8638, 2021.
    [98] J. Wang, S. Zhang, Z. Ma, and L. Yan, "Deep eutectic solvents eutectogels: progress and challenges," Green Chemical Engineering, vol. 2, no. 4, pp. 359-367, 2021/12/01/ 2021, doi: https://doi.org/10.1016/j.gce.2021.06.001.
    [99] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, "Novel solvent properties of choline chloride/urea mixtures," Chemical communications, no. 1, pp. 70-71, 2003.
    [100] F. Gabriele, M. Chiarini, R. Germani, M. Tiecco, and N. Spreti, "Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties," Journal of Molecular Liquids, vol. 291, p. 111301, 2019/10/01/ 2019, doi: https://doi.org/10.1016/j.molliq.2019.111301.
    [101] S. Verma, K. Saini, and S. Maken, "Deep eutectic solvents: A long–term approach to chemical synthesis and separation," Journal of Molecular Liquids, vol. 393, p. 123605, 2024/01/01/ 2024, doi: https://doi.org/10.1016/j.molliq.2023.123605.
    [102] Y. Liu, J. B. Friesen, J. B. McAlpine, D. C. Lankin, S.-N. Chen, and G. F. Pauli, "Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives," Journal of Natural Products, vol. 81, no. 3, pp. 679-690, 2018/03/23 2018, doi: 10.1021/acs.jnatprod.7b00945.
    [103] N. Guajardo, C. R. Müller, R. Schrebler, C. Carlesi, and P. Domínguez de María, "Deep eutectic solvents for organocatalysis, biotransformations, and multistep organocatalyst/enzyme combinations," ChemCatChem, vol. 8, no. 6, pp. 1020-1027, 2016.
    [104] L. I. N. Tomé, V. Baião, W. da Silva, and C. M. A. Brett, "Deep eutectic solvents for the production and application of new materials," Applied Materials Today, vol. 10, pp. 30-50, 2018/03/01/ 2018, doi: https://doi.org/10.1016/j.apmt.2017.11.005.
    [105] E. L. Smith, A. P. Abbott, and K. S. Ryder, "Deep eutectic solvents (DESs) and their applications," Chemical reviews, vol. 114, no. 21, pp. 11060-11082, 2014.
    [106] Q. Zhang, K. D. O. Vigier, S. Royer, and F. Jérôme, "Deep eutectic solvents: syntheses, properties and applications," Chemical Society Reviews, vol. 41, no. 21, pp. 7108-7146, 2012.
    [107] M. B. Singh, V. S. Kumar, M. Chaudhary, and P. Singh, "A mini review on synthesis, properties and applications of deep eutectic solvents," Journal of the Indian Chemical Society, vol. 98, no. 11, p. 100210, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.jics.2021.100210.
    [108] Y. P. Mbous, M. Hayyan, A. Hayyan, W. F. Wong, M. A. Hashim, and C. Y. Looi, "Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges," Biotechnology Advances, vol. 35, no. 2, pp. 105-134, 2017/03/01/ 2017, doi: https://doi.org/10.1016/j.biotechadv.2016.11.006.
    [109] S. P. Ijardar, V. Singh, and R. L. Gardas, "Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents," Molecules, vol. 27, no. 4, doi: 10.3390/molecules27041368.
    [110] B. B. Hansen et al., "Deep Eutectic Solvents: A Review of Fundamentals and Applications," Chemical Reviews, vol. 121, no. 3, pp. 1232-1285, 2021/02/10 2021, doi: 10.1021/acs.chemrev.0c00385.
    [111] S. Suffia and D. Dutta, "Applications of deep eutectic solvents in metal recovery from E-wastes in a sustainable way," Journal of Molecular Liquids, vol. 394, p. 123738, 2024/01/15/ 2024, doi: https://doi.org/10.1016/j.molliq.2023.123738.
    [112] L. B. Santos, R. S. Assis, J. A. Barreto, M. A. Bezerra, C. G. Novaes, and V. A. Lemos, "Deep eutectic solvents in liquid-phase microextraction: Contribution to green chemistry," TrAC Trends in Analytical Chemistry, vol. 146, p. 116478, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.trac.2021.116478.
    [113] M. Jablonský, A. Škulcová, and J. Šima, "Use of Deep Eutectic Solvents in Polymer Chemistry–A Review," Molecules, vol. 24, no. 21, p. 3978, 2019. [Online]. Available: https://www.mdpi.com/1420-3049/24/21/3978.
    [114] T. Altamash, M. Atilhan, A. Aliyan, R. Ullah, M. Nasser, and S. Aparicio, "Rheological, Thermodynamic, and Gas Solubility Properties of Phenylacetic Acid-Based Deep Eutectic Solvents," Chemical Engineering & Technology, vol. 40, no. 4, pp. 778-790, 2017/04/01 2017, doi: https://doi.org/10.1002/ceat.201600475.
    [115] Y. Cui, C. Li, J. Yin, S. Li, Y. Jia, and M. Bao, "Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride," Journal of Molecular Liquids, vol. 236, pp. 338-343, 2017/06/01/ 2017, doi: https://doi.org/10.1016/j.molliq.2017.04.052.
    [116] X.-s. Yin, Z.-f. Zhong, G.-l. Bian, X.-j. Cheng, and D.-q. Li, "Ultra-rapid, enhanced and eco-friendly extraction of four main flavonoids from the seeds of Oroxylum indicum by deep eutectic solvents combined with tissue-smashing extraction," Food Chemistry, vol. 319, p. 126555, 2020/07/30/ 2020, doi: https://doi.org/10.1016/j.foodchem.2020.126555.
    [117] C. L. Yiin, A. T. Quitain, S. Yusup, M. Sasaki, Y. Uemura, and T. Kida, "Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification," Bioresource Technology, vol. 199, pp. 258-264, 2016/01/01/ 2016, doi: https://doi.org/10.1016/j.biortech.2015.07.103.
    [118] T. El Achkar, S. Fourmentin, and H. Greige-Gerges, "Deep eutectic solvents: An overview on their interactions with water and biochemical compounds," Journal of Molecular Liquids, vol. 288, p. 111028, 2019.
    [119] M. Kuddushi, G. S. Nangala, S. Rajput, S. P. Ijardar, and N. I. Malek, "Understanding the peculiar effect of water on the physicochemical properties of choline chloride based deep eutectic solvents theoretically and experimentally," Journal of Molecular Liquids, vol. 278, pp. 607-615, 2019/03/15/ 2019, doi: https://doi.org/10.1016/j.molliq.2019.01.053.
    [120] M. Shaibuna, L. V. Theresa, and K. Sreekumar, "Neoteric deep eutectic solvents: history, recent developments, and catalytic applications," Soft Matter, vol. 18, no. 14, pp. 2695-2721, 2022.
    [121] K. A. Omar and R. Sadeghi, "Physicochemical properties of deep eutectic solvents: A review," Journal of Molecular Liquids, vol. 360, p. 119524, 2022/08/15/ 2022, doi: https://doi.org/10.1016/j.molliq.2022.119524.
    [122] F. Oyoun et al., "Deep Eutectic Solvents: An Eco-friendly Design for Drug Engineering," ChemSusChem, vol. 16, no. 20, p. e202300669, 2023/10/20 2023, doi: https://doi.org/10.1002/cssc.202300669.
    [123] K. A. Omar and R. Sadeghi, "Novel Deep Eutectic Solvents Based on Pyrogallol: Synthesis and Characterizations," Journal of Chemical & Engineering Data, vol. 66, no. 5, pp. 2088-2095, 2021/05/13 2021, doi: 10.1021/acs.jced.1c00023.
    [124] H. Wang, S. Liu, Y. Zhao, J. Wang, and Z. Yu, "Insights into the Hydrogen Bond Interactions in Deep Eutectic Solvents Composed of Choline Chloride and Polyols," ACS Sustainable Chemistry & Engineering, vol. 7, no. 8, pp. 7760-7767, 2019/04/15 2019, doi: 10.1021/acssuschemeng.8b06676.
    [125] R. Manurung et al., "Production of choline chloride-based deep eutectic solvent with hydrogen bond donor D-glucose and ethylene glycol," in IOP conference series: Materials Science and Engineering, 2019, vol. 505, no. 1: IOP Publishing, p. 012134.
    [126] C. Wang et al., "Effective recycling of critical metals from LiCoO2 batteries by hydrated deep eutectic solvents: Performance, kinetic and mechanism," Journal of Water Process Engineering, vol. 59, p. 105088, 2024/03/01/ 2024, doi: https://doi.org/10.1016/j.jwpe.2024.105088.
    [127] R. Mogale, Y. W. Abraha, M. Schutte-Smith, H. G. Visser, and E. Erasmus, "Highly efficient DES-based catalytic systems for carbon dioxide utilization via cycloaddition with epoxide substrates," Molecular Catalysis, vol. 554, p. 113812, 2024/02/01/ 2024, doi: https://doi.org/10.1016/j.mcat.2023.113812.
    [128] B. Nis, B. Kaya Ozsel, and Y. Kaya, "A DES or LTTM: Eco-friendly solvent mediums for conversion of biomass to levulinic acid as a key chemical," Journal of Molecular Liquids, vol. 409, p. 125462, 2024/09/01/ 2024, doi: https://doi.org/10.1016/j.molliq.2024.125462.
    [129] R. Su, S. Tang, M. Zhang, and M. Guo, "Strategies for overcoming challenges in using deep eutectic solvents for the selective extraction of valuable metals from spent lithium-ion batteries: A review," Journal of Environmental Chemical Engineering, vol. 12, no. 4, p. 113200, 2024/08/01/ 2024, doi: https://doi.org/10.1016/j.jece.2024.113200.
    [130] W. Sánchez-Ortiz et al., "A deep eutectic solvent as leaching agent and electrolytic bath for silver recovery from spent silver oxide batteries," Journal of the Electrochemical Society, vol. 168, no. 1, p. 016508, 2021.
    [131] R. Yang, N. Zhu, Y. Xi, S. Gao, P. Wu, and Z. Dang, "Recovery of crystalline silicon from waste solar cells by a green deep eutectic solvent–hydrogen peroxide system††Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4gc01322k," Green Chemistry, vol. 26, no. 12, pp. 7246-7257, 2024/06/17/ 2024, doi: https://doi.org/10.1039/d4gc01322k.
    [132] A. Entezari-Zarandi and F. Larachi, "Selective dissolution of rare-earth element carbonates in deep eutectic solvents," Journal of Rare Earths, vol. 37, no. 5, pp. 528-533, 2019/05/01/ 2019, doi: https://doi.org/10.1016/j.jre.2018.07.015.
    [133] X.-l. Zhu et al., "Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents," Transactions of Nonferrous Metals Society of China, vol. 29, no. 10, pp. 2222-2228, 2019/10/01/ 2019, doi: https://doi.org/10.1016/S1003-6326(19)65128-9.
    [134] B. Lu et al., "High-efficiency leaching of valuable metals from waste Li-ion batteries using deep eutectic solvents," Environmental Research, vol. 212, p. 113286, 2022/09/01/ 2022, doi: https://doi.org/10.1016/j.envres.2022.113286.
    [135] M. A. Topçu, A. Rüşen, and Ö. Küçük, "Treatment of copper converter slag with deep eutectic solvent as green chemical," Waste Management, vol. 132, pp. 64-73, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.wasman.2021.07.022.
    [136] C. Lemoine et al., "Circular recycling concept for silver recovery from photovoltaic cells in Ethaline deep eutectic solvent††Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ra05135a," RSC Advances, vol. 14, no. 40, pp. 29174-29183, 2024/09/12/ 2024, doi: https://doi.org/10.1039/d4ra05135a.
    [137] Z. Yuan, H. Liu, W. F. Yong, Q. She, and J. Esteban, "Status and advances of deep eutectic solvents for metal separation and recovery," Green Chemistry, vol. 24, no. 5, pp. 1895-1929, 2022/01/01/ 2022, doi: https://doi.org/10.1039/d1gc03851f.
    [138] J. Jiang et al., "Poly-quasi-eutectic solvents (PQESs): versatile solvents for dissolving metal oxides," Green chemistry, vol. 21, no. 20, pp. 5571-5578, 2019.
    [139] I. M. Pateli, D. Thompson, S. S. Alabdullah, A. P. Abbott, G. R. Jenkin, and J. M. Hartley, "The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents," Green Chemistry, vol. 22, no. 16, pp. 5476-5486, 2020.
    [140] K. Kumar, D. Zindani, and J. P. Davim, Sustainable engineering products and manufacturing technologies. Academic Press, 2019.
    [141] T. Lundstedt et al., "Experimental design and optimization," Chemometrics and Intelligent Laboratory Systems, vol. 42, no. 1, pp. 3-40, 1998/08/24/ 1998, doi: https://doi.org/10.1016/S0169-7439(98)00065-3.
    [142] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, "Response surface methodology (RSM) as a tool for optimization in analytical chemistry," Talanta, vol. 76, no. 5, pp. 965-977, 2008/09/15/ 2008, doi: https://doi.org/10.1016/j.talanta.2008.05.019.
    [143] W.-H. Chen et al., "A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM)," Renewable and Sustainable Energy Reviews, vol. 169, p. 112917, 2022.
    [144] S. C. Ferreira et al., "Box-Behnken design: an alternative for the optimization of analytical methods," Analytica chimica acta, vol. 597, no. 2, pp. 179-186, 2007.
    [145] G. E. Box and K. B. Wilson, "On the experimental attainment of optimum conditions," in Breakthroughs in statistics: methodology and distribution: Springer, 1992, pp. 270-310.
    [146] R. E. Bruns, I. S. Scarminio, and B. de Barros Neto, Statistical design-chemometrics. Elsevier, 2006.
    [147] S. Karthick, S.-J. Kwon, H. S. Lee, S. Muralidharan, V. Saraswathy, and R. Natarajan, "Fabrication and evaluation of a highly durable and reliable chloride monitoring sensor for civil infrastructure," RSC advances, vol. 7, no. 50, pp. 31252-31263, 2017.
    [148] G. E. Putri, F. R. Gusti, A. N. Sary, and R. Zainul, "Synthesis of silver nanoparticles used chemical reduction method by glucose as reducing agent," in Journal of Physics: Conference Series, 2019, vol. 1317, no. 1: IOP Publishing, p. 012027.
    [149] H. Cheng et al., "Oxidation characteristics and hazardous of α-pinene, β-pinene and turpentine," Arabian Journal of Chemistry, vol. 16, no. 12, p. 105322, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.arabjc.2023.105322.
    [150] R. Ballesteros, D. García, F. Bustamante, E. Alarcón, and M. Lapuerta, "Oxyfunctionalized turpentine: Evaluation of properties as automotive fuel," Renewable Energy, vol. 162, pp. 2210-2219, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.renene.2020.10.026.
    [151] B.-T. Yang, Y.-H. Huang, and C.-C. Chen, "Hydrophobic deep eutectic solvents as novel media for the recycling of waste photovoltaic modules," Chemical Engineering Journal, vol. 498, p. 155011, 2024/10/15/ 2024, doi: https://doi.org/10.1016/j.cej.2024.155011.
    [152] R. Min et al., "Effective decapsulation method for photovoltaic modules: Limonene-induced EVA controlled swelling under sonication and debonding mechanism analysis," Journal of Cleaner Production, vol. 450, p. 141917, 2024/04/15/ 2024, doi: https://doi.org/10.1016/j.jclepro.2024.141917.
    [153] D. M. Abdo, T. Mangialardi, F. Medici, and L. Piga, "D-limonene as a promising green solvent for the detachment of end-of-life photovoltaic solar panels under sonication," Processes, vol. 11, no. 6, p. 1848, 2023.
    [154] D. Sah and S. Kumar, "Experimental, cost and waste analysis of recycling process for crystalline silicon solar module," Solar Energy, vol. 273, p. 112534, 2024/05/01/ 2024, doi: https://doi.org/10.1016/j.solener.2024.112534.
    [155] T.-Y. Wang, "Recycling of solar cell materials at the end of life," Advances in Solar Photovoltaic Power Plants, pp. 287-317, 2016.
    [156] T. Li et al., "Closed-loop cobalt recycling from spent lithium-ion batteries based on a deep eutectic solvent (DES) with easy solvent recovery," Journal of Energy Chemistry, vol. 72, pp. 532-538, 2022/09/01/ 2022, doi: https://doi.org/10.1016/j.jechem.2022.05.008.
    [157] R. Stefanovic, M. Ludwig, G. B. Webber, R. Atkin, and A. J. Page, "Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor," Physical Chemistry Chemical Physics, vol. 19, no. 4, pp. 3297-3306, 2017.
    [158] S. Sivrikaya, "A novel vortex-assisted liquid phase microextraction method for parabens in cosmetic oil products using deep eutectic solvent," International Journal of Environmental Analytical Chemistry, vol. 99, no. 15, pp. 1575-1585, 2019.
    [159] Y. Yu et al., "Green recycling of end-of-life photovoltaic modules via Deep-Eutectic solvents," Chemical Engineering Journal, vol. 499, p. 155933, 2024/11/01/ 2024, doi: https://doi.org/10.1016/j.cej.2024.155933.
    [160] S. Perry, S. Gateman, L. Stephens, R. Lacasse, R. Schulz, and J. Mauzeroll, "Pourbaix Diagrams as a Simple Route to First Principles Corrosion Simulation," Journal of The Electrochemical Society, vol. 166, pp. C3186-C3192, 05/02 2019, doi: 10.1149/2.0111911jes.
    [161] H. Peng, F. Wang, G. Li, J. Guo, and B. Li, "Highly Efficient Recovery of Vanadium and Chromium: Optimized by Response Surface Methodology," ACS Omega, vol. 4, no. 1, pp. 904-910, 2019/01/31 2019, doi: 10.1021/acsomega.8b02708.

    無法下載圖示 校內:2030-07-21公開
    校外:2030-07-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE