簡易檢索 / 詳目顯示

研究生: 黃益龍
Huang, Yi-Lung
論文名稱: 雙原子鈉分子41S+u 電子態及附近區域位能之雷射光譜研究
Laser Spectroscopy of the Na2 41S+u State and the Nearby Potential Energy Curves
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 140
中文關鍵詞: 法蘭克–康登因子雙光子共振螢光衰減光譜技術
外文關鍵詞: FCFs, optical-optical double resonance fluorescence
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用兩台脈衝式染料雷射,以V-躍遷形式雙光子共振螢光衰減光譜技術經由B1Pu 中間態,研究41Su+ 及附近電子態,其躍遷方程式可表示如下:
    B1Pu (v’, J’) ← X1S g + (v”, J”) + hυ1
    41Su+ or nearby states ← X1S g + (v”, J”) + hυ2

    在能量31600~36500 cm-1之間,我們發現6個不同系列的訊號。經由分析,包含21Pu 電子態164個振轉能級,41Pu 電子態268個振轉能級,可能的41Su+ 電子態159個振轉能級,51Pu 電子態234個振轉能級,61Pu電子態65個振轉能級。其中在能量31800~32500 cm-1 附近所發現的訊號尚無法明確的定義,而依據理論計算所得到的能量值,我們初步將其認為是31Pu 電子態,只是需更多的實驗來加以佐證,而此能態共獲得46個振轉能級。我們最後利用非線性擬合程式計算這些能態的分子常數,並建立位能曲線。

    In this study, two tunable pulse dye lasers have been used to probe the rovibrational levels of the 41Su+ and the nearby states by V-type optical-optical double resonance fluorescence depletion method through the intermediate B1Pu state levels. The processes are described as follows:
    B1Pu (v’, J’) ← X1S g + (v”, J”) + hυ1
    41Su+ or nearby states ← X1S g + (v”, J”) + hυ2

    In the energy region of 31600~36500 cm-1, we have observed some signals divided into six groups. To our analysis, the signals contain 164 rovibrational levels of 21Pu state , 268 rovibrational levels of 41Pu state, 159 rovibrational levels of 41Su+ state, 234 rovibrational levels of 51Pu state, and 65 rovibrational levels of 61Pu state. However the signals between 31800~32500 cm-1 can’t be determined evidently. According to the energy comparison of our results and some theoretical calculations, we still assign them to be 31Pu state preliminary. We oberved 46 rovibrational levels of the state. The Dunham coefficients and Rydberg- Klein-Rees (RKR) potential energy curves of the six states are determined by our temporarily vibrational numbering assignments.

    中文摘要…………………………………………………………………………... Ⅰ 英文摘要…………………………………………………………………………... Ⅱ 目錄………………………………………………………………………………... Ⅲ 表目錄……………………………………………………………………………... Ⅷ 圖目錄……………………………………………………………………………... Ⅹ 第一章 緒論……………………………………………………………………. 1 1-1 前言……………………………………………………………………... 1 1-2 雙原子鈉分子 1Pu及 1Su+ 能態之研究動機…………………………. 1 1-3 雙原子鈉分子1Su+電子態之光譜研究歷史…………………………… 7 1-4 雙原子鈉分子1Πu電子態之光譜研究歷史…………………………… 8 第二章 理論………………………………………………………………..…... 11 2-1分子光譜………………………………...………………. ……. ……. … 11 2-2雙原子分子能量結構…………………………………………………… 11 2-2-1同核雙原子分子的轉動………………...…………..….………… 11 2-2-2同核雙原子分子的振動…………………………………………. 14 2-2-3波恩歐朋海默近似法及登亥姆係數的推導……………………. 16 2-3躍遷強度…...…….……………………………………………………… 19 2-3-1振動與轉動居量分布……………………………………………. 20 2-3-2法蘭克-康登因子………………………………………………… 22 2-3-3哈諾-倫敦等式…………………………………………………… 24 2-4同核雙原子電子態的項符……………………………………………… 24 2-5雙原子分子電子態躍遷選擇律…………………….…………………… 26 第三章 實驗……………………………………………………………………. 28 3-1 實驗裝置…………………………………………...…………….…...… 28 3-1-1 雷射系統………………………………………...…………..…... 28 3-1-1-1石榴石釹雷射………………………………………….. 28 3-1-1-2染料雷射………………………………………………... 30 3-1-1-3二倍頻系統……………………………………………... 33 3-1-2熱管爐系統…………………………………...……..……….…… 33 3-1-3偵測系統………………………………………………..………… 35 3-1-3-1單光儀…………………………………………………... 35 3-1-3-2光電倍增管……………………………………………... 37 3-1-4訊號處理系統……………………………………………………. 38 3-1-4-1訊號積分儀……………………………………………... 38 3-1-4-2示波器…………………………………………………... 39 3-1-4-3一般電腦………………………………………………... 40 3-1-5頻率校正系統………..…………………………………………… 40 3-1-5-1中空陰極管……………………………………………... 40 3-1-5-2碘槽……………………………………………………... 42 3-1-6其他………………………………………………………………. 42 3-1-6-1光學鏡片………………………………………….…….. 42 3-1-6-1-1減光濾片……………………….………………. 42 3-1-6-1-2聚焦鏡…………………….……………………. 42 3-1-6-1-3反射鏡……………………….…………………. 43 3-1-6-2電源供應器……………………………….…………….. 43 3-1-6-3功率計…………………………………………………... 44 3-1-6-4真空抽氣泵浦…………………………………………... 44 3-1-6-5熱電偶壓力計…………………………………………... 45 3-2實驗方法……………………………..……………………….….………. 45 3-2-1雷射誘導螢光………..…………………………………………… 46 3-2-2 V-形式雙光子共振螢光減弱光譜………………………………. 48 3-2-3未知態訊號的確認……………………………………………… 52 3-2-4染料雷射校正…………………………………………………… 56 3-2-5實驗步驟………………………………………………………… 56 3-2-6螢光位置的選擇………………………………………………… 57 3-2-7染料選擇………………………………………………………… 57 3-2-8程式計算與實驗比對流程……………………………………… 58 3-2-9實驗變因………………………………………………………… 59 第四章 結果與討論……………………………………………………………. 60 4-1簡介……………………………………………………………….……… 60 4-2 實驗結果…………...…………………….……………………………... 61 4-2-1電子能態分析……………………………………………………. 61 4-2-1-1 Na2 41Su+電子態的訊號………………………………... 62 4-2-1-2 Na2 21Pu電子態的訊號……………………………….. 72 4-2-1-3 Na2 31Pu電子態的訊號……………………………….. 75 4-2-1-4 Na2 41Pu電子態的訊號……………………………….. 78 4-2-1-5 Na2 51Pu電子態的訊號……………………………….. 81 4-2-1-6 Na2 61Pu電子態的訊號……………………………….. 84 4-2-2由實驗值建立位能曲線………………………………………… 87 4-2-2-1擬合分子常數………………………………………….. 87 4-2-2-2建立位能曲線………………………………………….. 87 4-2-2-3法蘭克-康登因子的計算…………………….………… 87 4-3未來展望…………………………………………….…………………… 110 第五章 結論.….….….….….….….….….….….….….….….….….….….……. 111 參考文獻…..….….….….….….….….….….….….….….….….….….….….…. 113 附錄……………………………………………………………………………... 117

    1. S. Magnier, Ph. Millie, O. Dulieu, and F. Masnou-Seeuws, J. Chem. Phys. 98(9), 7113(1993).
    2. C. E. Moore, ²Atomic Energy Levels, Vol. I ², p. 89, NSRDS-NBS 35,Washington D.C. (1971).
    3. G. Herzberg, "Molecular Spectra and Molecular Structure: Vol. 1,
    Spectra of Diatomic Molecules", Robert E. Krieger Publishing Co.,
    Malabar, Florida (1989).
    4. P. Kusch and M. M. Hessel, J. Chem. Phys. 63(9), 4087(1975).
    5. M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski and A. L. Schawlow, Phys. Rev. Letters, 36, 671(1976).
    6. M. E. Kaminsky, J. Chem. Phys. 66(11), 4951(1977).
    7. H. S. Schweda, G. K. Chawla and R. W. Field, Opt. Commun. 42, 165(1982).
    8. G. Gerber and R. Moller, Chem. Phys. Lett., 113(6), 546(1985).
    9. Katô, Otani, and Baba, J. Chem. Phys.89(2), 653(1989).
    10. F. Jenč and B. A. Brand, J. Mol. Spectrosc. 152, 38(1992).
    11. D. L. Cooper, R. F. Barrow, J. Verges, C. Effantin, and J. Dincan, Can. J. Phys. 62, 1543(1984).
    12. G. Delacretaz and L. Wőste, Chem. Phys. Lett., 120, 342(1985).
    13. R. Haugstätter, A. Georke, and I. V. Hertel, Z. Phys. D. 9, 153(1988).
    14. A. Pashov, W. Jastrzebski, W. Jasniecki, V. Bednarska, and P. Kowalczyk, J. Mol. Spectrosc. 203, 264(2000).
    15. G. –Y. Yan and A. L. Schawlow, J. Opt. Soc. Am. B, 6(12), 2309(1989).
    16. Li, Zhang, Wang, J. T. Kim, and W. C. Stwalley, J. Chem. Phys. 109(1), 102(1998).
    17. W. Demtröder, M. Mcclintock, and R. N. Zare, J. Chem. Phys. 51, 5495(1969).
    18. W. Demtröder, W. Stetzenbach, M. Stock, and J. Witt, J. Mol. Spectrosc. 61, 382(1976).
    19. P. Kusch and M. M. Hessel, J. Chem. Phys. 68(6), 2591(1978).
    20. 23. J. M. L. Poyato, J. J. Camacho, A. M. Polo, and A. Pardo, Spectrochim. Acta 51, 1879 (1995).
    21. J. M. L. Poyato, J. J. Camacho, A. M. Polo, and A. Pardo, Spectrochim. Acta 52, 409 (1996).
    22. J. J. Camacho, J. M. L. Poyato, A. M. Polo, and A. Pardo, J. Quant.
    Spectrosc. Radiat. Transfer 56, 353 (1996).
    23. J. J. Camacho, A. Pardo, A. M. Polo, D. Reyman, and J. M. L. Poyato,
    J. Mol. Spectrosc. 191, 248 (1998).
    24. A. Pardo, Chem. Phys. Lett. 309, 55 (1999).
    25. J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, Spectrochim. Acta A 56, 769 (2000).
    26. J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, J. Quant. Spectrosc. Radiat. Transfer 65, 729 (2000).
    27. A. Pardo, J. Mol. Spectrosc. 199, 225 (2000).
    28. J. J. Camacho, A. Pardo, and I. P. Acin, J. Phys. B: At. Mol. Opt. Phys. 34 , 2597 (2001).
    29. C. V. Wright, Ph. D. thesis, Oxford University(1960).
    30. Sinha, Proc. Phys. Soc. 59, 610(1947).
    31. K. K. Verma, T. H. Vu, and W. C. Stwalley, J. Mol. Spectrosc. 91, 325(1982).
    32. P. Bernage, P. Niay, and H. Bocquet, J. Mol. Spectrosc. 98,304(1983).
    33. G. –Y. Yan, B. W. Sterling, T. Kalka, and A. L. Schawlow, J. Opt. Soc. Am. B, 6(11), 1975(1989).
    34. W. Jastrzebski, P. Kowalczyk, J. J. Camacho, A. Pardo, and J. M. L. Poyato, Spectrochimica Acta Part A, 57, 1829(2001).
    35. R. F. Barrow, N. Travis, and C. V. Wright, Nature 187, 141(1960).
    36. P. Niay, P. Bernage, and H. Bocquet, J. Mol. Spectrosc. 128, 502(1988).
    37. G. –H. Jeung, Phys. Rev. A, 35,26(1987).
    38. A. Henriet and F. Masnou-Seeuws, J. Phys. B, 23,219(1990).
    39. J. T. Hougen, Monogr.115, Nat. Bur. Stand. (US) Washington D.C. (1970).
    40. Md. Humayun Kabir, Shinano, and Kasahara, J. Chem. Phys. 118(17), 7817(2003).
    41. W.A. Bingel, ²Theory of Molecular Spectra ² , Verlag Chemie, Weinheim (1967).
    42. W. Demtröder, ²Laser Spectrosccopy² , Springer-Verlag, Heidelberg (1998).
    43. B. H. Bransden and C. J. Joachain, "Physics of Atoms and Molecules", Addison Wesley Longman Limited, London. (1983).
    44. H. Hönl and F. London, Z. Physik 33, 803 (1925).
    45. S. Mangnier, Ph. Millie, O. Dulieu, and F. Masnou-seeuws, J. Chem.
    Phys. 98 (9), 7113 (1993).
    46. 丁勝懋,“雷射工程導論”,第三版,中央出版社出版(1993).
    47. Zhu, H. Nur, and Misra, J Quant. Spectroscc. Radiat Transfer, 52, 167-177. (1994).
    48. Kaufman and Edlen, J. Phys. Chem. Ref. Data, 3, 506 (1974).
    49. S. Gerstenkorn and P. Luc,“Atlas du Spectre D’Absorption de la Molecule d’Iode”, CNRS, Paris, (1978).
    50. S. Gerstenkorn and P. Luc, Rev. Phys. Appl. 14, 791 (1979).
    51. H. M. Crosswhite, J. Res. of National Bureau of standard-A. Phys. and Chem. 79, No.1, 17-69. (1975).
    52. 陸維作,國立中興大學雷射化學實驗室.
    53. 紀兆盈,“雙原子鈉分子(7d)1Dg電子態之雙光子共振光譜研究與D1Pu電子態之探討”,國立成功大學化學所碩士論文(2002年六月).

    下載圖示 校內:2006-07-07公開
    校外:2008-07-07公開
    QR CODE