| 研究生: |
楊子誠 Yang, Tzu-Cheng |
|---|---|
| 論文名稱: |
台南變形前緣構造之背景噪訊成像研究 Ambient noise tomography of the Tainan deformation front |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 共同指導教授: |
陳映年
Chen, Ying-Nien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 交互相函數 、噪訊層析成像 、泥貫入體 |
| 外文關鍵詞: | Ambient noise tomography, Eikonal tomography, mud diapir |
| 相關次數: | 點閱:32 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在台南地區擺放為時2-3個月,由33個地震儀組成的15x10 平方公里的密集陣列,平均站間距約為1公里。此陣列由西到東分別涵蓋了安平平原、台南台地、大灣低地三個構造區,其中在台南台地的與大灣低地的交界為後甲里斷層。首先在符合遠場的假設下,測站與震源之間的距離必須大於表面波波長的三倍;因此受限於站間距過短,傳統噪訊層析成像在此陣列無法解析長週期的訊號,因此本研究結合了傳統噪訊層析成像(Ambient noise tomography, ANT)與Eikonal Tomography分別在短週期(1~3秒)與長週期(4~9秒)的二維速度構造,建立台南都會區的三維速度構造。在短週期,總共產生528條波徑,本研究針對每條波徑計算交互相關函數(Cross-correlation function, CCF),接著測量交互相關函數1秒至3秒之間的相速度值,經篩選出品質穩定的頻散曲線後,反演得到台南地區雷利波二維相速度構造。而長週期利用距離此密集陣列40至80公里且方位角介於45°到140°間與270°到360°的六個中央氣象署測站與五個臺灣寬頻地震網資料,同樣計算測站間連續記錄的交互相關函數,得到地震網內4-9秒的噪訊表面波波傳特性,最後利用Beamforming的結果測量波傳的相對到時,進行Eikonal Tomography的分析。接著結合兩種方法,反演出三維速度構造。本研究的結果顯示在淺層短週期部分大部分的結果是均質的,整個區域的速度值介於0.4~0.7公里每秒之間,並無特定的區域有相對高或低的速度,這代表在淺層的區域主要由沉積物組成,沒有太大的側向變化。而到長週期的部分可以發現速度值從安平平原、台南台地到大灣低地是由慢、快再變化到慢,在4秒週期下,這個區域的平均速度約為1.5公里/秒。從三維速度構造來看台南台地的地下構造形狀如同泥貫入體,而後甲里斷層為泥貫入體抬升所形成的逆衝斷層。
We selected 33 out of 173 seismic station data covering a 10 by 15 km2 area in the Tainan deformation front of southwestern Taiwan from February to June 2021. With an inter-station distance of about 1 km, the seismic array spanned west to east across three major tectonic regimes: Anping Plain, Tainan Tableland, and Dawan Lowland. Structurally, the Houchiali Fault separates the Tainan Tableland and Dawan Lowland. For the seismic array analysis, if the far-field sources come from all azimuths, the source must be greater than three times the wavelength of surface waves. However, since the inter-station distance is short, ambient noise tomography cannot resolve long-period distance signals within the array. Thus, the inter-station distance must be increased through Eikonal tomography. In this study, we combined the two-dimensional velocity structures of ambient noise tomography (ANT) and Eikonal tomography in short periods (1~3 seconds) and long periods (4~9 seconds), respectively, to create a three-dimensional velocity model in this area. For the ambient noise tomography, 528 station pairs were generated. We calculated the cross-correlation function for each station pair. Then, we measured phase velocity for a period ranging from 1 to 3 seconds. We included data from five Broadband Array in Taiwan for Seismology (BATs) stations and six stations from the Central Weather Administration Seismographic Network (CWASN) for the Eikonal tomography. We also calculated the cross-correlation function (CCF) between 33 seismometers and these stations. Then, we subsequently used beamforming for these results to measure the relative surface wave arrival times. To perform Eikonal tomography, we calculated the surface wave propagation of the ambient noise and the shallow velocity structure for each period ranging from 4 to 9 seconds. Our results show the velocities in the shallow (short-period) part are homogeneous. The velocity in the entire area ranges from 0.4 to 0.7 km/s. There is no specific area with relatively high or low velocity. This means the shallower layers consist mainly of sediments without much lateral variation. In the long period, the velocity value changes from slow to fast and then to slow from Anping Plain, Tainan Tableland, to Dawan Lowland. In 4 seconds, the average speed in this area is about 1.5 kilometers/second. Overall, the three-dimensional velocity structure implies that the structure of the Tainan Tableland is shaped like a mud diapir, while the Houchiali Fault is a thrust fault formed by the uplift of the mud diapir.
吳東錦、陳于高、劉聰桂(1992) 台南台地台南層之沈積史與新期構造研究。地質, 第12 卷,第2 期, 第167-184 頁。
林啟文、盧詩丁、石同生、劉彥求、林偉雄、林燕慧(2007)臺灣西南部的活動斷層。經濟部中央地質調查所特刊第 17 號,共 141 頁。
林朝棨(1957)臺灣地形。臺灣省通志稿,第一卷,第一冊,臺灣文獻委員會,424頁。
林燕慧、劉彥求、石瑞銓、陳平護(2004)台南台地的淺部地下構造與後甲里斷層。經濟部中央地質調查所特刊第 15 號,121-135 頁。
鳥居敬造(1933)高雄州旗山油田調查報告及旗山油田地質圖(三萬分之一)。臺灣總督府殖產局第633號,共36頁。
張錫齡(1962)六雙層的命名。中國地質學會專刊創刊號,189-192頁。
郭炫佑(1999)後甲里斷層及其附近構造。國立中央大學地球物理研究所碩士論文,共 83 頁。
陳于高(1993) 晚更新世以來南台灣地區海水面變化與新構造運動研究。國立台灣大學地質學研究所博士論文, 共158 頁
陳文山、黃能偉、楊志成(2011c)臺灣西南部更新世沉積層序特性與前陸盆地演化。經濟部中央地質調查所特刊第25號,1-38頁。
陳松春(2013)臺灣西南海域上部高屏斜坡泥貫入體及泥火山之分布及相關海床特徵。國立中央大學地球物理研究所博士論文,共 116 頁。
陳松春、景國恩、羅佑宗、陸挽中(2020)台南背斜及中洲背斜之泥貫入體特徵、活動性及地質安全。經濟部中央地質調查所彙刊,第 33 號,1-32頁。
孫習之、施垚鑫(1960)高雄縣大崗山至鳳山區間地質調查報告,中油內部報告。
鍾廣吉(1985) 臺灣南部台南層之有孔蟲古生態學研究。地質, 第6 卷,第2 期, 第33-46 頁。
饒瑞鈞、景國恩、謝宗訓、余致義、侯進雄、李元、胡植慶、詹瑜璋、李建成、洪日豪(2003)。台南台地的地表變形與地震潛能。經濟部中央地質調查所特刊第十四號,第161-171頁。
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., and Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International., 169, 1239–1260.
Boschi, L., Weemstra, C., Verbeke, J., Ekström, G., Zunino, A., and Giardini, D. (2013). On measuring surface wave phase velocity from station–station crosscorrelation of ambient signal. Geophysical Journal International., 192, 346-358.
Breen, N.A., Tagudin, J.E., Reed, D.L., Silver, E.A. (1988). Mud-cored parallel folds and possible melange development in the north Panama thrust belt. Geology., 16, 207-210.
Chen, Y.-G. and Liu, T.-K. (2000) Holocene uplift and subsidence along an active tectonic margin southwestern Taiwan. Quaternary Science Reviews, 19, 923-930.
Chen, Y.-N., Gung, Y., You, S.-H., Hung, S.-H., Chiao, L.-Y., Huang, T.-Y., and Jan, S. (2011). Characteristics of short period secondary microseisms (SPSM) in Taiwan: The influence of shallow ocean strait on SPSM. Geophysical Research Letters., 38, L04305.
Chiao, L.-Y., and W.T. Liang, (2003) Multiresolution parameterization for geophysical inverse problems, Geophysics, 68, 1-11.
Dahlen, F.A & Tromp, J., 1998. Theoretical Global Seismology, Princeton university press.
Dooley, T. P., Jackson, M. P. A. and Hudec, M. R. (2009). Inflation and deflation of deeply buried salt stocks during lateral shortening. Journal of Structural Geology, 31, 582-600.
Fruneau, B., Pathier, E., Raymond, D., Deffontaines, B., Lee, C.-T., Wang, H.-T., Angelier, J., Rudant, J. P., and Chang, C.-P. (2001). Uplift of Tainan Tableland (SW Taiwan) revealed by SAR interferometry. Geophysical Research Letters, 28, 3071-3074.
Harmon, N., M. S. D. L. Cruz, C. A. Rychert, G. Abers, and K. Fischer (2013). Crustal and mantle shear velocity structure of Costa Rica and Nicaragua from ambient noise and teleseismic Rayleigh 86 wave tomography, Geophysical Journal International, 195, 1300-1313.
Herrmann, R. B. and Ammon, C. J. (2002). Computer programs in seismology: surface waves, receiver functions and crustal structure. St. Louis University, St. Louis, MO.
Horng, C.S., Torii, M., Shea, K.S., Kao, S.T. (1998). Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite- bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth and Planetary Science Letters, 164, 467-481.
Hsieh, S. H. (1972). Subsurface geology and gravity anomalies of the Tainan and Chungchou structure of the coastal plain of southwestern Taiwan. Petroleum Geology of Taiwan, 10, 323-338.
Huang, M.-H., Hu, J.-C., Hsieh, C.-S., Ching, K.-E., Rau, R.-J., Pathier, E., Fruneau, B., and Deffontaines, B. (2006). A growing structure near the deformation front in SW Taiwan as deduced from SAR interferometry and geodetic observation. Geophysical Research Letters, 33, L12305.
Huang, T. Y., Gung, Y., Kuo, B. Y., Chiao, L. Y., & Chen, Y. N. (2015). Layered deformation in the Taiwan orogen. Science, 349, 720-723.
Ku, C.Y., Hsu, S.K., 2009. Crustal structure and deformation at the northern Manila Trench between Taiwan and Luzon Islands. Tectonophysics, 466, 229–240.
Le Béon, M., Huang, M.-H., Suppe, J., Huang, S.-T., Pathier, E. and Huang, W.-J. (2017). Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences., 28, 663-681.
Levshin, A. L., Lander, A.V., (1989). Recording, identification, and measurement of surface wave parameters. In: Keilis-Borok, V.I. (Ed.), Seismic Surface Waves in a Laterally Inhomogeneous Earth. 131–182.
Li Z., Zhou J., Wu G., Wang J., Zhang G., Dong S., Pan L., Yang Z., Gao L., Ma Q., Ren H. and Chen X. (2022). CC-FJpy: A Python Package for seismic ambient noise cross-correlation and the frequency-Bessel transform method. Science, 349, 720-723.
Lin, F.-C., Ritzwoller M. H., and Snieder R. (2009). Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array, Geophysical Journal International, 177, 1091-1110.
Lo, Y.-T., Ching K.-E., Yen H.-Y. and Chen S.-C. (2023). Bouguer gravity anomalies and the three-dimensional density structure of a thick mudstone area: A case study of southwestern Taiwan. Tectonophysics, 848, 229730.
Nayak, A. and Thurber, C. H. (2020). Using multicomponent ambient seismic noise cross-correlations to identify higher mode Rayleigh waves and improve dispersion measurements, Geophysical Journal International, 222.
Nishida, K., Kawakatsu, H., and Obara, K. (2008). Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters. Journal of Geophysical Research: Solid Earth, 113.
Poli, P., Campillo, M., Pedersen, H., LAPNET Working Group, Heikkinen, P., and Komminaho, K. (2012). Body-Wave imaging of Earth's Mantle Discontinuities from Ambient Seismic Noise. Science, 338, 1063-1065.
Rawlinson, N., 2005. FMST: Fast Marching Surface Tomography Package–Instructions, Research School of Earth Sciences, Australian National University, Canberra, 29, 47.
Rost, S., and Thomas, C. (2002). Array seismology: Methods and applications. Reviews of geophysics, 40, 2-1-2-27.
Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31.
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307, 1615-1618.
Stach, L. W. (1957). Subsurface exploration and geology of the coastal plain region of western Taiwan. Proceedings of the Geological Society of China, 1, 55-96.
Stehly, L., Campillo, M., and Shapiro, N. M. (2006). A study of the seismic noise from its long-range correlation properties. Journal of Geophysical Research, 111.
Sun, S. C. (1964). Photogeologic study of the Tainan-Kaohsiung Coastal plain area, Taiwan. Petroleum Geology of Taiwan, 3, 39-51.
Tsai, V. C. (2009). On establishing the accuracy of noise tomography travel-time measurements in a realistic medium. Geophysical Journal International, 178, 1555-1564.
Van Veen, B. D., & Buckley, K. M. (1988). Beamforming: A versatile approach to spatial filtering. IEEE assp magazine, 5, 4-24.
Yao, H., van Der Hilst, R. D., and De Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophysical Journal International, 166, 732-744.
校內:2028-01-16公開