| 研究生: |
詹國琴 Chan, Kuo-Chin |
|---|---|
| 論文名稱: |
質塊-阻尼-彈簧系統之最小相位強健性分析 Robustness Analysis on Minimum Phase Property of Mass-Dashpot-Spring Systems |
| 指導教授: |
林鐘烲
Lin, Jong-Lick |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 質塊-阻尼-彈簧系統 、比例阻尼 、傳輸零點與極點之交錯分佈特性 、模式阻尼 、最小相位系統 、最小相位強健性 、取樣系統 、狀態空間系統 |
| 外文關鍵詞: | mass-dashpot-spring system, interlacing property of transmission zeros/pole, proportional damping, modal damping, sampled system, minimum phase system, minimum phase robustness, state-space system |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文介紹機械與結構系統之質塊-阻尼-彈簧模型,並探討此模型之傳輸零點分佈、最小相位特性與最小相位強健性問題。藉由適當的非線性映射及應用根軌跡技術,吾人成功地證明出:滿足充分條件B=CTΓ之比例阻尼型(proportional damping)質塊-阻尼-彈簧系統,其傳輸零點與極點:在複數左半s-平面之特定圓及負實軸線段上有交錯分佈(interlacing)的現象。
在文獻中已證實:滿足B=CTΓ之質塊-阻尼-彈簧連續時間系統具有最小相位特性。值得再深入探討的是:該系統經取樣後,是否仍保有最小相位特性?在本文中吾人證實:滿足B=CTΓ之模式阻尼型(modal damping)質塊-阻尼-彈簧系統經過取樣後,仍是最小相位系統。值得注意的是:此特性與取樣頻率無關。
此外,質塊-阻尼-彈簧不確定性系統,其最小相位特性之強健性問題亦是值得探討的主題。因此,吾人將推導其保持最小相位特性所能容許之最大擾動範圍。由於此最小相位強健性問題,係直接以二階動態型式表示之,故可得到最小維度之擾動矩陣,進而獲得較精確之結果。
最後,吾人延伸探討具有仿線性參數不確定性(affine parametric uncertainty)之狀態空間系統,決定該系統保有最小相位特性所能容許之最大擾動範圍。文中,吾人利用線性分式轉換(linear fractional transformation),以減少求結構化奇異值(structured singular value)之矩陣的維度,並降低數值計算量。
The mass-dashpot-spring models of mechanical and structural systems are introduced in this work. It is aimed to investigate the transmission zeros distribution, the minimum phase property and minimum phase robustness for a mass-dashpot-spring system. By virtue of an appropriate nonlinear mapping and the root-locus technique, it is verified that the transmission zeros interlace with poles on a specific circle and the nonpositive real axis segments of the s-plane for a mass-dashpot-spring system with proportional damping and B=CTΓ.
In literature, a continuous-time mass-dashpot-spring system with B=CTΓ was shown to be minimum phase. It is worthy to investigate whether the corresponding sampled-data system still exhibits minimum phase property. In this work, the sampled system of a modal damping mass-dashpot-spring structural dynamics with sufficient condition B=CTΓ is verified to be minimum phase. Notably, this property is independent of the sampling period.
In addition, it is desirable to know how robustly an uncertain mass-dashpot-spring system maintains the minimum phase property. To this end, the allowable margin of perturbations is derived to guarantee minimum phase property of the uncertain system. For the sake of obtaining less conservative results, the perturbation matrix with a minimal dimension is directly derived on the basis of a second-order dynamical equation.
At last, the uncertainties margin for a state-space system with affine parametric uncertainties is determined. The minimum phase property of the uncertain system is guaranteed within the uncertainties margin. Based on the linear fractional transformation, the matrix sizes involved in the computation of structured singular value are significantly reduced to improve computational burden.
[ÅHS84] Åström, K. J., P. Hagander and J. Sternby, “Zeros of Sampled Systems,” Automatica, Vol. 20, pp. 31-38, 1984.
[AnO02] Angeles, J. and S. Ostrovskaya, “The Proportional-Damping Matrix of Arbitrarily Damped Linear Mechanical Systems,” ASME Journal of Applied Mechanics, Vol. 69, pp. 649-656, 2002.
[ÅsW95] Åström, K. J. and B. Wittenmark, Adaptive Control, Addison-Wesley, New York, 1995.
[ÅsW97] Åström, K. J. and B. Wittenmark, Computer-Controlled Systems: Theory and Design, Prentice-Hall International, London, 1997.
[Bal82] Balas, M. J., “Trends in Large Space Structure Control Theory: Fondest Hopes, Wildest Dreams,” IEEE Transactions on Automatic Control, Vol. 27, No. 3, pp. 522-535, 1982.
[BDGPS95] Balas, G. J., J. C. Doyle, K. Glover, A. Packard and R. Smith, m-Analysis and Synthesis Toolbox, Musyn and The MathWorks, Natick, MA, 1995.
[Bla99] Blachuta, M. J., “On Zeros of Pulse Transfer Functions,” IEEE Transactions on Automatic Control, Vol. 44, No. 6, pp. 1229-1234, 1999.
[ChD94] Chang, T. N. and E. J. Davison, “Characterization of Infinite Transmission Zeros of State Space Systems,” Proceedings of the 33rd IEEE Conference on Decision and Control, pp. 2059-2060, 1994.
[Che84] Chen, C. T., Linear System Theory and Design, Oxford University Press, Inc., New York, 1984.
[Che98] Chen, S. J., An LFT Approach to Robustness Analysis of Uncertain Linear Singular Systems, Ph.D. Thesis, National Cheng Kung University, R.O.C., 1998.
[ChL05] Chan, K. C. and J. L., Lin, “On the Minimum Phase Property of Mass- Dashpot-Spring Sampled-Data Systems,” accepted for publication in ASME Journal of Dynamic Systems, Measurement, and Control, 2005.
[Cho95] Chopra, A. K., Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice-Hall, Englewood Cliffs, N.J., 1995.
[Cho99] Chowdhury, S. H., Damping Characteristics of Reinforced and Partially Prestressed Concrete Beams, Ph.D. Thesis, Griffith University, Australia, 1999.
[Chu96] Chung, S. C., “Zero Dynamics for Collocated Control in Flexible Structure Systems,” R.O.C. Automatic Control Conference, pp. 411-416, 1996.
[CLC02] Chen, S. J., J. L. Lin and K. C. Chan, “Minimum Phase Robustness for Uncertain State-Space Systems,” International Journal of Systems Science, Vol. 33, No. 15, pp. 1179-1186, 2002.
[CLSC02] Chan, K. C., J. L. Lin, J. J. Sheen and S. J. Chen, “On Interlacing Properties of Mass-Dashpot-Spring Systems,” R.O.C. Automatic Control Conference, pp. 32-37, 2002.
[Cra81] Craig, R .R., Structural Dynamics, John Wiley & Sons, Inc., New York, 1981.
[Dav83] Davison, E. J., “Some Properties of Minimum Phase Systems and Squared- Down Systems,” IEEE Transactions on Automatic Control, Vol. 28, No. 2, pp. 221-222, 1983.
[DaW74] Davison, E. J. and S. H. Wang, “Properties and Calculation of Transmission Zeros of Linear Multivariable Systems,” Automatica, Vol. 10, pp. 643-658, 1974.
[DeS74] Desoer, C. A. and J. D. Schulman, “Zeros and Poles of Matrix Transfer Functions and Their Dynamical Interpretation,” IEEE Transactions on Circuits and Systems, Vol. 21, No. 1, pp. 3-8, 1974.
[Doy82] Doyle, J. C., “Analysis of Control Systems With Structured Uncertainties,” IEE Proc. D, Vol. 129, No. 6, pp. 242-250, 1982.
[DPZ91] Doyle, J. C., A. Packard and K. Zhou, “Review of LFTs, LMIs and μ,” Proceedings of the 30th IEEE Conference on Decision and Control, pp. 1227-1232, 1991.
[EmV82] Emami-Naeini, A. and P. Van Dooren, “Computation of Zeros of Linear Multivariable Systems,” Automatica, Vol. 18, No. 4, pp. 415-430, 1982.
[FrL85] Freudenberg, J. S. and D. P. Looze, “Right Half Plane Poles and Zeros and Design Tradeoffs in Feedback Systems,” IEEE Transactions on Automatic Control, Vol. 30, No. 6, pp. 555-565, 1985.
[FST93] Fong, I. K., J. H. Su and C. L. Tseng, “Robustness Analysis of the Minimum Phase Property for Systems With Structured Uncertainties,” Journal of Control Systems and Technology, Vol. 1, pp. 75-82, 1993.
[FTD91] Fan, M. K. H., A. L. Tits and J. C. Doyle, “Robustness in the Presence of Mixed Parametric Uncertainty,” IEEE Transactions on Automatic Control, Vol. 36, pp. 25-38, 1991.
[FuB97] Fu, M. and N. E. Barabanov, “Improved Upper Bounds for the Mixed Structured Singular Value,” IEEE Transactions on Automatic Control, Vol. 42, pp. 1447-1452, 1997.
[FuD89] Fu, Y. and G. A. Dumont, “Choice of Sampling to Ensure Minimum-Phase Behavior,” IEEE Transactions on Automatic Control, Vol. 34, No. 5, pp. 560- 563, 1989.
[GéR97] Géradin, M. and D. Rixen, Mechanical Vibrations: Theory and Application to Structural Dynamics, John Wiley & Sons, Inc., Chichester, England, 1997.
[GoS84] Goodwin, G. C. and K. S. Sin, Adaptive Filtering, Prediction, and Control, Prentice-Hall, Englewood Cliffs, N.J., 1984.
[GPK97] Geniele, H., R. V. Patel and K. Khorasani, “End-Point Control of a Flexible- Link Manipulator: Theory and Experiments,” IEEE Transactions on Control Systems Technology, Vol. 5, No. 6, pp. 556-570, 1997.
[Hag88] Hagedorn, P., Non-Linear Oscillations, Clarendon Press, Oxford, 1988.
[HaW00] Hart, G .C. and K. Wong, Structural Dynamics for Structural Engineers, John Wiley & Sons, Inc., New York, 2000.
[HeW03] Heilig, J. and J. Wauer, “Stability of a Nonlinear Brake System at High Operating Speeds,” Nonlinear Dynamics, Vol. 34, pp. 235-247, 2003.
[HKK89] Hara, S., H. Katori and R. Kondo, “The Relationship Between Real Poles and Real Zeros in SISO Sampled Data Systems,” IEEE Transactions on Automatic Control, Vol. 34, No. 6, pp. 632- 635, 1989.
[HoJ90] Horn, R. A. and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1990.
[HYA93] Hagiwara, T., T. Yuasa and M. Araki, “Stability of the Limiting Zeros of Sampled-Data Systems With Zero- and First-Order Holds,” International Journal of Control, Vol. 58, No. 6, pp. 1325-1346, 1993.
[InW00] Inniss, C. and T. Williams, “Sensitivity of the Zeros of Flexible Structures to Sensor and Actuator Location,” IEEE Transactions on Automatic Control, Vol. 45, No. 1, pp. 157-160, 2000.
[Ish92] Ishitobi, M., “Conditions for Stable Zeros of Sampled Systems,” IEEE Transactions on Automatic Control, Vol. 37, No. 10, pp. 1558-1561, 1992.
[Ish00] Ishitobi, M., “A Stability Condition of Zeros of Sampled Multivariable Systems,” IEEE Transactions on Automatic Control, Vol. 45, No. 2, pp. 295- 299, 2000.
[IsL04] Ishitobi, M. and S. Liang, “On Zeros of Discrete-Time Models for Collocated Mass-Damper-Spring Systems,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 126, No. 1, pp. 205-210, 2004.
[JaB91] Jabbari, F. and R. W. Benson, “Observers for Stabilization of Systems With Matched Uncertainty,” Proceedings of the 30th IEEE Conference on Decision and Control, pp. 2634-2635, 1991.
[Jen76] Jensen, P. S., “Stiffly Stable Methods for Undamped Second Order Equations of Motion,” SIAM Journal on Numerical Analysis, Vol. 13, pp. 549-563, 1976.
[JuP92] Juang, J. N. and M. Phan, “Robust Controller Designs for Second-Order Dynamic Systems: A Virtual Passive Approach,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 15, pp. 1192-1198, 1992.
[Kai80] Kailath T., Linear Systems, Prentice-Hall, Englewood Cliffs, N.J., 1980.
[KaK79] Karcanias, N. and B. Kouvaritakis, “The Output Zeroing Problem and its Relationship to the Invariant Zero Structure: A Matrix Pencil Approach,” International Journal of Control, Vol. 30, No. 3, pp. 395–415, 1979.
[KoM76a] Kouvaritakis, B. and A. G. J. MacFarlane, “Geometric Approach to Analysis and Synthesis of System Zeros: Part 1. Square Systems,” International Journal of Control, Vol. 23, No. 2, pp. 149-166, 1976.
[KoM76b] Kouvaritakis, B. and A. G. J. MacFarlane, “Geometric Approach to Analysis and Synthesis of System Zeros: Part 2. Non-Square Systems,” International Journal of Control, Vol. 23, No. 2, pp. 167-181, 1976.
[KwS72] Kwakernaak, H. and R. Sivan, Linear Optimal Control Systems, Wiley- Interscience, New York, 1972.
[Laz68] Lazan, B. J., Damping of Materials and Members in Structural Mechanics, Pergamon Press, Oxford, 1968.
[LCC01] Lin, J. L., K. C. Chan and S. J. Chen, “The Margin of Minimum Phase Robustness for Second-Order Systems With Multidirectional Perturbations,” R.O.C. Automatic Control Conference, pp. 561-566, 2001.
[LCC04] Lin, J. L., K. C. Chan and S. J. Chen, “Minimum Phase Robustness Margin for Second-Order Systems With Multidirectional Perturbations,” Journal of the Franklin Institute, Vol. 341, No. 3, pp. 255-265, 2004.
[LCJ99] Lin, J. L., S. J. Chen and J. N. Juang, “Minimum-Phase Robustness for Second-Order Linear Systems,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 22, pp. 229-234, 1999.
[LCSC04] Lin, J. L., K. C. Chan, J. J. Sheen and S. J. Chen, “Interlacing Properties for Mass-Dashpot-Spring Systems With Proportional Damping,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 126, No. 2, pp. 426-430, 2004.
[LiC99] Lin, J. L. and S. J. Chen, “Robustness Analysis of Uncertain Linear Singular Systems With Output Feedback Control,” IEEE Transactions on Automatic Control, Vol. 44, pp. 1924-1929, 1999.
[LiJ95] Lin, J. L. and J. N. Juang, “Sufficient Conditions for Minimum-Phase Second- Order Linear Systems,” Journal of Vibration and Control, Vol. 1, pp. 183-199, 1995.
[Lin92] Lin, J. L., Control System Design for Robust Stability and Robust Performance, Ph.D. Thesis, Leicester University, U.K., 1992.
[Lin99] Lin, J. L., “On Transmission Zeros of Mass-Dashpot-Spring Systems,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 121, pp. 179-183, 1999.
[MaJ93] Maghami, P. G. and S. M. Joshi, “Sensor/Actuator Placement for Flexible Space Structures,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, pp. 345-351, 1993.
[MaK76] MacFarlane, A. G. J. and N. Karcanias, “Poles and Zeros of Linear Multivariable Systems: A Survey of the Algebraic, Geometric and Complex- Variable Theory,” International Journal of Control, Vol. 24, No. 1, pp. 33-74, 1976.
[Mat98] The MathWorks, Inc., Control System Toolbox User’s Guide, The MathWorks, Inc. Natick, Mass, 1998.
[Mei85] Meirovitch, L., Introduction to Dynamics and Control, Wiley, New York, 1985.
[Mei90] Meirovitch, L., Dynamics and Control of Structures, Wiley-Interscience, New York, 1990.
[Miu91] Miu, D. K., “Physical Interpretation of Transfer Function Zeros for Simple Control Systems With Mechanical Flexibilities,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 113, pp. 419-424, 1991.
[MiY81] Mita, T. and H. Yoshida, “Undershooting Phenomenon and its Control in Linear Multivariable Servomechanisms,” IEEE Transactions on Automatic Control, Vol. 26, No. 2, pp. 402-407, 1981.
[MiY94] Miu, D. K. and B. Yang, “On Transfer Function Zeros of General Collocated Control Systems With Mechanical Flexibilities,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 116, pp. 151-154, 1994.
[MoJ94] Morris, K. A. and J. N. Juang, “Dissipative Controller Designs for Second- Order Dynamic Systems,” IEEE Transactions on Automatic Control, Vol. 39, No. 5, pp. 1056-1063, 1994.
[Mus02] Mustafa, M. M., “Trajectory-Adaptive Digital Tracking Controllers for Non- minimum Phase Systems Without Factorisation of Zeros,” IEE Proceedings- Control Theory and Applications, Vol. 149, No. 2, pp. 157-162, 2002.
[NaA89] Narendra, K. S. and A. M. Annaswamy, Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, N.J., 1989.
[NoI61] Norimatsu, T. and M. Ito, “On the Zero Non-regular Control System,” Japan Institute of Electrical Engineers, Vol. 81, pp. 566-575, 1961.
[OLNS98] Ortega, R., A. Loría, P. J. Nicklasson and H. Sira-Ramírez, Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications, Springer-Verlag, London, 1998.
[Par77] Park, K. C., “Practical Aspects of Numerical Time Integration,” Computers and Structures, Vol. 7, pp. 343-353, 1977.
[Paz97] Paz, M., Structural Dynamics, Chapman & Hall, New York, 1997.
[PoR93] Poljak, S. and J. Rohn, “Checking Robust Nonsingularity is NP Hard,” Mathematics Control Signal Systems, Vol. 6, pp. 1-9, 1993.
[Prz68] Przemieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-Hill, Inc., New York, 1968.
[QiD89] Qiu, L. and E. J. Davison, “The Stability Robustness of Generalized Eigenvalues,” IEEE Conference on Decision and Control, Tampa, Florida, pp. 1902-1907, 1989.
[Ros70] Rosenbrock, H. H., State-Space and Multivariable Theory, Wiley-Interscience, New York, 1970.
[Ros73] Rosenbrock, H. H., “The Zeros of a System,” International Journal of Control, Vol. 18, No. 2, pp. 297-299, 1973.
[Sal02] Salzmann, A., Damping Characteristics of Reinforced and Prestressed Normal- and High-Strength Concrete Beams, Ph.D. Thesis, Griffith University, Australia, 2002.
[SaS90a] Saberi, A. and P. Sannuti, “Observer Design for Loop Transfer Recovery and Uncertain Dynamic Systems,” IEEE Transactions on Automatic Control, Vol. 35, No. 8, pp. 878-897, 1990.
[SaS90b] Sain, M. K. and C. B. Schrader, “The Role of Zeros in the Performance of Multiinput, Multioutput Feedback Systems,” IEEE Transactions on Education, Vol. 33, No. 3, pp. 244-257, 1990.
[ScS89] Schrader, C. B. and M. K. Sain, “Research on System Zeros: A Survey,” International Journal of Control, Vol. 50, pp. 1407-1433, 1989.
[SlL91] Slotine, J.-J. E. and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, N.J., 1991.
[Smi88] Smith, J. W., Vibration of Structures: Applications in Civil Engineering Design, Chapman & Hall, London, 1988.
[STF95] Su, J. H., C. L. Tseng and I. K. Fong, “Robust Minimum Phase Property of Linear Systems With Uncertain Parameters,” Control Theory and Advanced Technology, Vol. 10, pp. 2199-2207, 1995.
[SyL93] Syrmos, V. L. and F. L. Lewis, “Transmission Zero Assignment Using Semistate Descriptions,” IEEE Transactions on Automatic Control, Vol. 38, No. 7, pp. 1115-1120, 1993.
[Syr93] Syrmos, V. L., “Computational Observer Design Techniques for Linear Systems With Unknown Inputs Using the Concept of Transmission Zeros,” IEEE Transactions on Automatic Control, Vol. 38, No. 5, pp. 790-794, 1993.
[Tom87] Tomizuka, M., “Zero Phase Error Tracking Algorithm for Digital Control,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 109, No. 1, pp. 65-68, 1987.
[Wel99] Weller, S. R., “Limiting Zeros of Decouplable MIMO Systems,” IEEE Transactions on Automatic Control, Vol. 44, No. 1, pp. 129-134, 1999.
[WiJ90] Williams, T. and J. N. Juang, “Pole/Zero Cancellations in Flexible Space Structures,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 13, No. 4, pp. 684-690, 1990.
[WiJ92] Williams, T. and J. N. Juang, “Sensitivity of the Transmission Zeros of Flexible Space Structures,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 15, No. 2, pp. 368-375, 1992.
[Wil89a] Williams, T., “Computing the Transmission Zeros of Large Space Structures,” IEEE Transactions on Automatic Control, Vol. 34, No. 1, pp. 92-94, 1989.
[Wil89b] Williams, T., “Transmission-Zero Bounds for Large Space Structures With Applications,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 12, No. 1, pp. 33-38, 1989.
[WiL92] Williams, T. and A. J. Laub, “Orthogonal Canonical Forms for Second-Order Systems,” IEEE Transactions on Automatic Control, Vol. 37, No. 7, pp. 1050- 1052, 1992.
[YoD96] Young, P. M. and J. C. Doyle, “Properties of the Mixed μ Problem and its Bounds,” IEEE Transactions on Automatic Control, Vol. 41, No. 1, pp. 155- 159, 1996.
[ZDG96] Zhou, K., J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice- Hall, Upper Saddle River, N.J., 1996.
[Zer99] Zerz, E., “LFT Representations of Parametrized Polynomial Systems,” IEEE Transactions on Circuits and Systems, Vol. 46, No. 3, pp. 410-416, 1999.
[ZhD98] Zhou, K. and J. C. Doyle, Essentials of Robust Control, Prentice-Hall International, Inc., London, 1998.