| 研究生: |
鄭博文 Cheng, Po-Wen |
|---|---|
| 論文名稱: |
一SUU上肢肌肉骨骼模型及其於驅動輪椅與一復健機器手之肌力分析的應用 A SUU Musculoskeletal Model of the Upper Limb and Its Applications on the Muscular Force Analysis of Operating Wheelchairs and a Rehabilitation Robot |
| 指導教授: |
邱顯堂
Chiou, Shen-Tarng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 231 |
| 中文關鍵詞: | 骨骼肌肉模型 、輪椅 、復健機器手 、二次規劃 、肌力分析 |
| 外文關鍵詞: | Musculoskeletal model, Wheelchair, Rehabilitation robot, Quadratic programming, Muscular force analysis |
| 相關次數: | 點閱:136 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有許多用人體的上肢操作的器械,如各式手工具、輔具、及健身器
材等。若有可靠的上肢模型,而得與這些器械原本的設計及分析模式整
合,應可設計而製作出更好用者。
本研究的目的為建立一 SUU 上肢肌肉骨骼模型,再以其應用於上肢
驅動輪椅及復健機器手,並分別建立其肌肉路徑、肌力及關節負荷分析
模式。首先考慮上肢十九條肌肉,並分別將其以線段視之,而其肌肉路
徑則以繞過四種不同之障礙物,分別建立其肌肉路徑的分析模式,而可
得肌肉長度及其重要之特徵點位置。接著使用所建立的SUU 骨骼肌肉模
型,以二次規劃(Quadratic programming)建立一肌肉激發程度的分析模式,
根據此模式可得肌肉作用於骨骼的肌力。最後,再根據牛頓運動定律,
建立關節負荷的分析模式,以了解在肌力作用下,關節所承受的負荷。
另外,針對上肢驅動輪椅及復健機器手,分別以實例說明各分析模式的
使用,及顯示其分析結果。
本研究建立之 SUU 上肢肌肉骨骼模型及相關的分析模式,可用於分
析上肢的運動、肌力及關節負荷等,可供手動器械設計者進行其更完整
的設計與分析,且有助於探討上肢使用這些器械可能受傷的原因。
There are many gears, such as hand tools, assisting devices, body-fitting
equipments, and so on, which are operated by upper limbs of humans. If
there exists a reliable model of the upper limb, and can be integrated with
those for the design and analysis of the gears, then their better products should
be able to been designed and developed.
The purpose of this study is to propose a SUU musculoskeletal model of
the human upper limb, then apply it to develop the models for the muscular
path, muscular force, and joint load analyses during propelling wheelchairs
and operating a rehabilitation robot. Nineteen muscles are considered within
the model, each of them is treated as one or several string-type muscles. The
Obstacle-set method is adopted, including four types of obstacles, to build the
model for the determination of the muscular paths and muscular lengths.
Regarding the muscle activation analysis, it is constructed as a quadratic
programming problem; consequently, the muscular forces can be determined.
The second Newton’s law is applied to develop the model of the joint load
analysis. Furthermore, propelling wheelchairs and operating a rehabilitation
robot are used as examples to show the usages of the models developed and to
display the analysis results.
The proposed SUU musculoskeletal models can be used to analyze the
motion, muscular force and joint load of the upper limb, which should have
aids on better designing of hand operating devices, and on investigating the
injuries of upper limbs due to the operation of these instruments.
Argosy Publishing, 2010, http://www.visiblebody.com, 31st May.
Audenaert, A., and Audenaert, E., 2008, "Global Optimization Method for
Combined Spherical–Cylindrical Wrapping in Musculoskeletal Upper
Limb Modeling," Computer Methods and Programs in Biomedicine, Vol.
92, pp. 8-19.
Barhorst, A., and Schovanec, L., 2002, "Effects of Control Strategies on
Stress Development in Skeletal Structures," Proceedings of the American
Control Conference, 8-10 May, Anchorage, Alaska, pp. 2319-2322.
Blemker, S. S., and Delp, S. L., 2006, “Rectus Femoris and Vastus
Intermedius Fiber Excursions Predicted by Three-Dimensional Muscle
Models,” Journal of Biomechanics, Vol. 39, pp. 1383-1391.
Chao, E., Y., S., 2003, “Graphic-Based Musculoskeletal Model for
Biomechanical Analyses and Animation,” Medical Engineering &
Physics, Vol. 25, pp. 201-212.
Charlton, I. W., and Johnson, G. R., 2001, "Application of Spherical and
Cylindrical Wrapping Algorithms in a Musculoskeletal Model of the
Upper Limb," Journal of Biomechanics, Vol. 34, pp. 1209-1216.
Cheng, E. J., Brown, I. E., and Loeb, G. E., 2000, “Virtual Muscle: A
Computational Approach to Understanding the Effects of Muscle
Properties on Motor Control,” Journal of Neuroscience Methods, Vol.
101, pp. 117-130.
Chumanov, E. S., Heiderscheit, B. C., and Thelen, D. C., 2007, “The Effect of
124
Speed and Influence of Individual Muscles on Hamstring Mechanics
during the Swing Phase of Sprinting,” Journal of Biomechanics, Vol. 40
pp. 3555–3562.
Colombo, R., Pisano, F., Micera, S., Mazzone, A., Delconte, C., Carrozza, M.
C., Dario, P., and Minuco, G., 2005, "Robotic Techniques for Upper
Limb Evaluation and Rehabilitation of Stroke Patients," IEEE
Transactions on Neural Systems and Rehabilitation Engineering, Vol. 13,
No. 3, pp. 311-324.
Cooper, A., and Straker, L., 1998, “Mouse Versus Keyboard Use: A
Comparison of Shoulder Muscle Load,” International Journal of
Industrial Ergonomics, Vol. 22, pp. 351-357.
Crowninshield, R. D., and Brand, R. A., 1981, “A Physiologically Based
Criterion of Muscle Force Prediction in Locomotion,” Journal of
Biomechanics, Vol. 14, No. 11, pp. 793-801.
Damsgaard, M., Rasmussen, J., Visser, B., Christensen, S. T., Surma, E., and
Zee, M. D., 2006, "Analysis of Musculoskeletal Systems in the AnyBody
Modeling System," Simulation Modeling Practice and Theory, Vol. 14,
pp. 1100-1111.
Dariush, B., Parnianpour, M., and Hemami, H., 1998, “Stability and a Control
Strategy of a Multilink Musculoskeletal Model with Applications in
FES,” IEEE Transaction on Biomedical Engineering, Vol. 45, pp. 3-14.
Davoodi, R., Brown, I. E., and Loeb, G. E., 2003, “Advanced Modeling
Environment for Developing and Testing FES Control Systems,”
Medical Engineering & Physics, Vol. 25, pp. 3-9.
125
Desroches, G., Dumas, R., Pradon, D., Vaslin, P., Lepoutre, F., and Cheze, P.,
2010, “Upper Limb Joint Dynamics during Manual Wheelchair
Propulsion,” Clinical Biomechanics, Vol. 25, pp. 299-306.
Dubowsky, S. R., Rasmussen, J., Sisto, S. A, and Langrana, N. A, 2008,
"Validation of a Musculoskeletal Model of Wheelchair Propulsion and
Its Application to Minimizing Shoulder Joint Forces," Journal of
Biomechanics, Vol. 41, pp. 2981-2988.
Erol, D., and Sarkar, N., 2008, “Coordinated Control of Assistive Robotic
Devices for Activities of Daily Living Tasks,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, Vol. 16, No. 3, pp.
278-285.
Formica, D., Zollo1, L., Guglielmelli, E., and Rodgers, M. M., 2006,
"Torque-Dependent Compliance Control in the Joint Space for
Robot-Mediated Motor Therapy," Journal of Dynamic systems,
Measurements and Control, Vol. 128, pp. 152-158.
Gao, F., Damsgaard, M., Rasmussen, J., and Christensen, S. T., 2002,
"Computational Method for Muscle-Path Representation in
Musculoskeletal Models," Biological Cybernetics, Vol. 87, pp. 199-210.
Garner, B. A. and Pandy, M. G., 1999, “A Kinematic Model of the Upper
Limb Based on the Visible Human Project Image Dataset,” Computer
Methods in Biomechanics and Biomedical Engineering, Vol. 2, pp.
107-124.
Garner, B. A. and Pandy, M. G., 2000a, "The Obstacle-Set Method for
Representing Muscle Paths in Musculoskeletal Models," Computer
126
Methods in Biomechanics and Biomedical Engineering, Vol. 3, pp. 1-30.
Garner, B. A. and Pandy, M. G., 2000b, "Musculoskeletal Model of the Upper
Limb Based on the Visible Human Male Dataset," Computer Methods in
Biomechanics and Biomedical Engineering, Vol. 4, pp. 93-126.
Garner, B. A. and Pandy, M. G., 2003, "Estimation of Musculotendon
Properties in the Human Upper Limb," Annals of Biomedical
Engineering, Vol. 31, pp. 207-220.
Gatti C. J., and Hughes, R. E, 2009, "Optimization of Muscle Wrapping
Objects Using Simulated Annealing," Annals of Biomedical Engineering,
Vol. 37, No. 7, pp. 1342-1347.
Heintz, S., and Gutierrez-Farewik, E. M., 2007, “Static Optimization of
Muscle Forces during Gait in Comparison to EMG-to-Force Processing
Approach,” Gait & Posture, Vol. 26, pp. 279-288.
Holzbaur, K. R. S., Murray, W. M., and Delp, S. L., 2005, "A Model of the
Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing
Neuromuscular Control," Annals of Biomedical Engineering, Vol. 33, No.
6, pp. 829-840.
Hughes, A., Freeman, C., Burridge, J., Chappell, P., Lewin, P., and Rogers, E.,
2009, “Upper Limb Rehabilitation of Stroke Participants Using
Electrical Stimulation: Changes in Tracking and EMG Timing,” IEEE
11th International Conference on Rehabilitation Robotics, 23-26 June,
Koyto, Japan, pp. 59-65.
Kikuuwe, R., Yamamoto, T., and Fujimoto, H., 2008, "A Guideline for
Low-Force Robotic Guidance for Enhancing Human Performance of
127
Positioning and Trajectory Tracking: It Should Be Stiff and
Appropriately Slow," IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, Vol. 38, No. 4, pp. 945-957.
Kung, P., C., Lin, C., C., K., Ju, M., S., and Chen, S., M., 2009, "Time Course
of Abnormal Synergies of Stroke Patients Treated and Assessed by a
Neuro-Rehabilitation Robot," International Conference on Rehabilitation
Robotics, 23-26 June, Koyto, Japan.
Langenderfer, J., LaScalza, S., Mell, A., Carpenter, J. E., Kuhn, J. E., and
Hughes, R. E., 2005, "An EMG-Driven Model of the Upper Extremity
and Estimation of Long Head Biceps Force," Computers in Biology and
Medicine, Vol. 35, pp. 25–39.
Laursen. B., Sogaard, K., and Sjogaard, G., 2003, “Biomechanical Model
Predicting Electromyographic Activity in Three Shoulder Muscles from
3D Kinematics and External Forces during Cleaning Work,” Clinical
Biomechanics, Vol. 18, pp. 287-295.
Laurence, R., and Agnes, R.-B., 2006, "Shoulder Movements during the
Initial Phase of Learning Manual Wheelchair Propulsion in Able-Bodied
Subjects," Clinical Biomechanics, Vol. 21, pp. S45-S51.
Li, L., Tong, K., Song, R., and Koo, T. K. K., 2007, “Is Maximum Isometric
Muscle Stress the Same among Prime Elbow Flexors,” Clinical
Biomechanics, Vol. 22, pp. 874-883.
Louis, N., and Gorce, P., 2009, “Upper Limb Muscle Forces during a Simple
Reach-to-Grasp Movement: A Comparative Study,” Medical and
Biological Engineering, Vol. 47, pp. 1173-1179.
128
Mahoney, R. M., Van der Loos, H. F. M., Lum, P. S., and Burgar, C., 2003,
"Robotic Stroke Therapy Assistant," Robotica, Vol. 21, No. 1, pp. 33-44.
Marcelo, E., and Walter, H., 1998, Theoretical Models of Skeletal Muscle,
John Wiley & Sons Ltd, West Sussex, England.
Masia, L., Krebs, H. I., Cappa, P., and Hogan, N., 2007, "Design and
Characterization of Hand Module for Whole-Arm Rehabilitation
Following Stroke," IEEE/ASME Transactions on Mechatronics, Vol. 12,
No. 4, pp. 399-407.
Menegaldo, L. L., Fleury, A. T., and Weber, H. I., 2003, "Biomechanical
Modeling and Optimal Control of Human Posture," Journal of
Biomechanics, Vol. 36, pp. 1701–1712.
Menegaldo, L. L., Fleury, A. de T., and Weber, H. I., 2004, “Moment Arms
and Musculotendon Lengths Estimation for a Three-Dimensional
Lower-Limb Model,” Journal of Biomechanics, Vol. 37, pp. 1447-1453.
Menegaldo, L. L., Fleury, A. T., and Weber, H. I., 2006, “A `Cheap'
Optimal Control Approach to Estimate Muscle Forces in
Musculoskeletal Systems,” Journal of Biomechanics, Vol. 39, pp.
1787-1795.
Mercer, J. L., Boninger, M., Koontz, A., Ren, D., Dyson-Hudson, T., and
Cooper, R., 2006, "Shoulder Joint Kinetics and Pathology in Manual
Wheelchair Users," Clinical Biomechanics, Vol. 21, No. 8, pp. 781-789.
Morrow, M. M. B., Hurd, W. J., Kaufman, K. R., and An, K. N., 2010,
“Shoulder Demands in Manual Wheelchair Users Across a Spectrum of
Activities,” Journal of Electromyography and Kinesiology, Vol. 20, pp.
129
61-67.
Moody, C. B., Barhorst, A. A., and Schovanec, L., 2009, “A Neuro-Muscular
Elasto-Dynamic Model of the Human Arm Part 2: Musculotendon
Dynamics and Related Stress Effects,” Journal of Bionic Engineering,
Vol. 6, pp. 108-119.
Murray, I. A., and Johnson, G. R., 2004, "A Study of the External Forces and
Moments at the Shoulder and Elbow while Performing Every Day
Tasks," Clinical Biomechanics, Vol. 19, No. 6, pp. 586-594.
Ogihara, N.,and Yamazaki, N. 1999, "Generation of Human Reaching
Movement Using a Recurrent Neural Network Model, " Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics,
12-15 October, Tokyo, Japan, Vol. 2, pp. 692-697.
Pal, S., Langenderfer , J. E., Stowe, J. Q., Laz, P. J., Petrella, A. J., and
Rullkoetter, P. J., 2007, “Probabilistic Modeling of Knee Muscle
Moment Arms: Effects of Methods, Origin–Insertion, and Kinematic
Variability,” Annals of Biomedical Engineering, Vol. 35, No. 9, pp.
1632-1642.
Pennestri’, E., Stefanelli, R., Valentini, P. P., and Vita, L., 2007, "Virtual
Musculo-Skeletal Model for the Biomechanical Analysis of the Upper
Limb," Journal of Biomechanics, Vol. 40, No. 6, pp. 1350-1361.
Pigeon, P., Yahia, L., and Feldman, A. G., 1996, "Moment Arms and Lengths
of Human Upper Limb Muscles as Functions of Joint Angles," Journal
of Biomechanics, Vol. 29, No. 10, pp. 1365-1370.
Rohen, J., W., Tokochi, C., and Lutjen-Drecoll E., 2002, Color Atlas of
130
Anatomy, Lippincott Williams & Wilkins, Baltimore Maryland, USA.
Rosen, J., and Perry, J. C., 2007, "Upper Limb Powered Exoskeleton,"
International Journal of Humanoid Robotics, Vol. 4, No. 3, pp. 529-548.
Rosati, G., Gallina, P., and Masiero, S., 2007, "Design, Implementation and
Clinical Tests of a Wire-Based Robot for Neurorehabilitation," IEEE
Transactions on Neural Systems and Rehabilitation Engineering, Vol. 15,
No. 4, pp. 560-569.
Seth, A., and Pandy, M. G., 2007, "A Neuromusculoskeletal Tracking Method
for Estimating Individual Muscle Forces in Human Movement, " Journal
of Biomechanics, Vol. 40, pp. 356-366.
Soetanto, D.,and Kuo, C-Y., 2002, "Improved Dynamics Model for Human
Standing Posture Control Using Functional Neuromuscular Stimulation,"
International Journal of Systems Science, Vol. 33, No. 2, pp. 129-140.
Terrier, A., Vogel, A., Capezzali, M., and Farron, A., 2008, "An Algorithm to
Allow Humerus Translation in the Indeterminate Problem of Shoulder
Abduction," Medical Engineering and Physics, Vol. 30, No. 6, pp.
710-716.
The Math Works Inc., 2007, Matlab® Getting Started Guide, R2007b, Natick,
MA, USA.
Veeger, H. E. J., Rozendaal, L. A., and van der Helm, F. C. T., 2002, "Load on
the Shoulder in Low Intensity Wheelchair Propulsion," Clinical
Biomechanics, Vol. 17, No. 3, pp. 211-218.
Wei, S.-H., Huang, S.-L., Jiang, C.-J., and Chiu, J.-C., 2003, "Wrist
Kinematic Characterization of Wheelchair Propulsion in Various Seating
131
Positions: Implication to Wrist Pain," Clinical Biomechanics, Vol. 18, No.
6, pp. S46-S52.
Wojcik L. A., 2003, “Modeling of Musculoskeletal Structure and Function
Using a Modular Bond Graph Approach,” Journal of the Franklin
Institute, Vol. 304, No. 1, pp. 63-76.
Wu, G., van der Helm, F., C. T., Veeger, H. E. J., Makhsouse, M., Roy, P. V.,
Angling, C., Nagelsh, J., Kardunai, A. K., McQuadej, K., Wangk, X.,
Wernerl, F. W., and Buchholzm, B., 2005, "ISB Recommendation on
Definitions of Joint Coordinate Systems of Various Joints for the
Reporting of Human Joint Motion — Part II: Shoulder, Elbow, Wrist and
Hand," Journal of Biomechanics, Vol. 38, pp. 981-992.
Yanagawa, T., Goodwin, C. J., Shelburne, K. B., Giphart, J. E., Torry, M. R.,
and Pandy, M. G., 2008, "Contributions of the Individual Muscles of the
Shoulder to Glenohumeral Joint Stability during Abduction," Journal of
Biomechanical Engineering, Vol. 130, No. 2, pp. 021024
Zajac, F., E., 1989, "Muscle and Tendon: Properties, Models, Scaling, and
Application to Biomechanics and Motor Control," Biomedical
Engineering, Vol. 17, pp. 359-411.
吳思穎,2003,"上肢復健機器臨床試驗與改良",碩士論文,國立成功大
學機械工程學系,台南,台灣。
林棟煌,2001,"肘關節神經復健用機器人之改良和臨床測試",碩士論文,
國立成功大學機械工程學系,台南,台灣。
范宏竹,2003,"設計發展機器手臂輔助系統於中風病人的上肢治療訓練
",碩士論文,國立成功大學醫學工程學系,台南,台灣。
132
徐玉珍,2003,"輪椅設計系統之研發",碩士論文,國立台北科技大學機
電整合研究所,台北,台灣。
郭藍遠,2003,"推力最佳化輪椅研究",博士論文,國立成功大學醫學工
程研究所,台南,台灣。
陳宜成,2010,使用SUU為基礎之模型於上肢驅動輪椅及復健機器手之
運動及靜力分析,碩士論文,國立成功大學機械工程學系,台南,
台灣。
陳秋旺,2000,"肘關節神經復健用機器人之研究",碩士論文,國立成功
大學機械工程學系,台南,台灣。
陳健行與陳柏松 編譯,2003,彩色解剖學圖譜,合計圖書出版社,台北,
台灣。(原著:Putz, R., and Pabst, R., 2000, Atlas of Human Anatomy,
Urban & Fischer, Munchen Jena.)
張豐榮與郭玉梅編譯,1990,人體的地圖,暢文出版社,台北,台灣。
(原著:高橋長雄,1898,からだの地図帳,講談社,音羽,文京區,
東京都,日本。)
許世昌,2001,新編解剖學,永大書局有限公司,台北,台灣。
楊書菱與許怡婷 編譯,2007,認識關節:關節的功能與構造,合記圖書出
版社,台北,台灣。(原著:Bernard, K., 2000, Understanding Joints: A
Practical Guide to Their Structure and Function, Nelson Thornes
Limited, Cheltenham, UK.)
董憲奇,2001,"肘關節神經復健用機器人之改進與臨床研究",碩士論文,
國立成功大學機械工程學系,台南,台灣。
校內:2013-08-16公開