簡易檢索 / 詳目顯示

研究生: 施仲軒
Shih, Chung-Hsuan
論文名稱: 熱交換器於具相變化材料之熱箱中的三維自然對流熱傳特性的預測
Prediction of 3D Natural Convection Heat Transfer Characteristics for Heat Exchanger in a Hot Box with Phase Change Material
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 139
中文關鍵詞: 逆向三維數值方法自然對流相變化材料熱箱
外文關鍵詞: Inverse 3D CFD method, natural convection, PCM, hot box
相關次數: 點閱:48下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以三維逆向計算流體力學方法配合超定的實驗溫度數據及最小平方法來預測對於管式熱交換器置於固態氧化物燃料電池之簡化熱箱內,加熱之矩形管的熱傳率、石蠟的吸收熱、適當的流動模型和三維自然對流熱傳特性。透過測試不同的流動模型可以發現,在無相變化材料時使用零方程式模型其溫度之均方根誤差最小,且與經驗公式所求得之結果最貼切;當在第二根圓管中填入相變化材料時,採用標準壁函數之標準k-ε模型於所有模型中具有最佳的準確度。
    結果顯示,降低兩圓柱擺放之角度能夠使空腔內之溫度趨於對稱,避免空腔近壁處出現高溫。改變圓柱壁間距與圓柱離加熱器距離雖會影響空腔內的流動現象,然而僅在特定情況下才能使腔內溫度分布對稱,以達到降低空腔近壁處溫度之效果。加入相變化材料僅可些微降低腔內溫度約1 K左右,然由於相變化材料擺放之位置離加熱器較遠且與熱源無直接接觸,導致傳熱效率不佳,相變化材料無法達到其熔點,故吸熱效果不如預期。因此本研究不推薦僅透過對流將熱傳遞至相變化材料來達到降低空腔溫度的效果。

    This research examines a small-scale hot box model with two cylinder tubes and a rectangular heater. Temperature data is collected using 10 K-type thermocouples. After conducting grid independence analysis for mesh generation, Computational Fluid Dynamics (CFD) is utilized to obtain numerical results. The unknown heat source is determined via the least squares method. The study then selects an appropriate turbulence model based on comparing the root mean square error (RMSE) between numerical and experimental results. .The effect on temperature contour and streamline resulted from 4 different parameters are discussed.
    A zero-equation model is found suitable for cases without Phase Change Material (PCM), while the standard k-ε model is more appropriate for cases involving PCM. Increasing the inclination angle of two horizontal tubes can increase the convective heat transfer coefficient ((h_hu ) ̅) by up to 25%, but may lead to higher temperatures near the walls. Reducing the distance between the walls of two tubes can slightly increase (h_hd ) ̅, but may also raise wall temperatures. The distance from the tubes to the rectangular heater has minimal effect on h but can lower near-wall temperatures. The addition of PCM can reduce cavity temperatures by only 0.5 to 2 K, as heat transfer is predominantly limited to convection.

    摘要I Extend AbstractIII 致謝VIII 目錄IX 表目錄XII 圖目錄XV 符號說明XIX 第一章緒論1 1-1 研究背景1 1-2 文獻回顧3 1-3 研究目的與方法6 1-4 本文架構8 第二章三維逆向計算流體力學方法10 2-1 計算流體力學簡介10 2-2 基本假設11 2-3 紊流模型11 2-3-1 統御方程式11 2-3-2 零方程式模型14 2-3-3 標準k-ε 模型15 2-3-4 重整化群 k-ε 模型17 2-3-5 熱傳方程式與邊界條件19 2-4 逆向方法22 2-4-1 最小平方法23 2-4-2 均方根誤差分析27 第三章實驗設計與方法28 3-1 實驗設計28 3-2 實驗設備32 3-2-1 矩形空腔32 3-2-2 加熱與供電系統33 3-2-3 資料擷取系統34 3-3 實驗變因39 3-4 實驗步驟41 第四章三維CFD軟體模擬分析45 4-1 軟體簡介45 4-2 幾何模型建構46 4-3 網格47 4-3-1 網格品質47 4-3-2 網格獨立性50 4-4 求解方法54 第五章結果與討論56 5-1 流動模型選定56 5-2 圓柱擺放角度之影響61 5-3 圓柱壁間距之影響67 5-4 圓柱離加熱器距離之影響74 5-5 相變化材料之影響82 第六章結論與展望111 6-1 結論111 6-2 未來展望與建議112 第七章參考文獻114

    [1] 中華民國公用瓦斯事業協會. 瓦斯季刊第141期.
    [2] IEA, “CO2 Emissions in 2022”. 2023.
    [3] Taylor, C. and Ijam, A., “A finite element numerical solution of natural convection in enclosed cavities”. Computer Methods in Applied Mechanics and Engineering, Vol. 19(3), 1979. pp. 429-446.
    [4] Baggio, P., Bonacina, C., and Strada, M., “First comparisons between numerical modelling and experimental analysis of free convection in a rectangular cavity”. Communications in Applied Numerical Methods, Vol. 5(2), 1989. pp. 129-137.
    [5] Balaji, C. and Venkateshan, S., “Interaction of surface radiation with free convection in a square cavity”. International Journal of Heat and Fluid Flow, Vol. 14(3), 1993. pp. 260-267.
    [6] Mahdi, H.S. and Kinney, R.B., “Time‐dependent natural convection in a square cavity: Application of a new finite volume method”. International Journal for Numerical Methods in Fluids, Vol. 11(1), 1990. pp. 57-86.
    [7] Betts, P. and Bokhari, I., “Experiments on turbulent natural convection in an enclosed tall cavity”. International Journal of Heat and Fluid Flow, Vol. 21(6), 2000. pp. 675-683.
    [8] Markatos, N.C. and Pericleous, K., “Laminar and turbulent natural convection in an enclosed cavity”. International Journal of Heat and Mass transfer, Vol. 27(5), 1984. pp. 755-772.
    [9] Wang, X., Wei, Y., and Shen, X., “Numerical investigation of the first bifurcation for natural convection of fluids enclosed in a 2D square cavity with Pr lower than 1.0”. Energy Conversion and Management, Vol. 50(10), 2009. pp. 2504-2512.
    [10] Seki, N., Fukusako, S., and Inaba, H., “Heat transfer in an enclosed rectangular cavity with a relatively small aspect-ratio”. 北海道大學工學部研究報告, Vol. 87, 1978. pp. 75-84.
    [11] Zheng, J., Zhang, L., Yu, H., Wang, Y., and Zhao, T., “Study on natural convection heat transfer in a closed cavity with hot and cold tubes”. Science Progress, Vol. 104(2), 2021. pp. 00368504211020965.
    [12] Kim, B., Lee, D., Ha, M., and Yoon, H., “A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations”. International Journal of Heat and Mass Transfer, Vol. 51(7-8), 2008. pp. 1888-1906.
    [13] Chen, H.T., You, C.H., Hsu, W.L., and Chang, J.R., “Using the inverse method to investigate flow models for mixed convection of annular finned tube heat exchanger”. Journal of Marine Science and Technology, Vol. 29(5), 2021. pp. 652-665.
    [14] Orlande, H.R., “Inverse problems in heat transfer: new trends on solution methodologies and applications”. Journal of Heat Transfer, Vol. 134(3), 2012. pp. 031011.
    [15] Stambouli, A.B. and Traversa, E., “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy”. Renewable and Sustainable Energy Reviews, Vol. 6(5), 2002. pp. 433-455.
    [16] Chen, H.T., Chang, S.C., Hsu, M.H., and You, C.H., “Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC”. International Journal of Heat and Mass Transfer, Vol. 181, 2021. pp. 121880.
    [17] Regin, A.F., Solanki, S., and Saini, J., “Heat transfer characteristics of thermal energy storage system using PCM capsules: a review”. Renewable and Sustainable Energy Reviews, Vol. 12(9), 2008. pp. 2438-2458.
    [18] Osterman, E., Tyagi, V., Butala, V., Rahim, N.A., and Stritih, U., “Review of PCM based cooling technologies for buildings”. Energy and Buildings, Vol. 49, 2012. pp. 37-49.
    [19] Mehling, H. and Cabeza, L.F., “Heat and cold storage with PCM”. Heat and Mass Transfer, 2008. pp. 11-55.
    [20] Chen, H.T., Chang, C.W., Rashidi, S., Čespiva, J., and Yan, W.-M., “Natural convection heat transfer in isosceles prismatic roof with perforated partition and phase change material”. Thermal Science and Engineering Progress, Vol. 48, 2024. pp. 102428.
    [21] Chen, H.T., Zhang, R.X., Yan, W.M., Amani, M., and Ochodek, T., “Numerical and experimental study of inverse natural convection heat transfer for heat sink in a cavity with phase change material”. International Journal of Heat and Mass Transfer, Vol. 224, 2024. pp. 125333.
    [22] Prandtl, L., “7. Bericht über untersuchungen zur ausgebildeten turbulenz”. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 5(2), 1925. pp. 136-139.
    [23] Launder, B.E. and Spalding, D.B., “The numerical computation of turbulent flows”, in Numerical prediction of flow, Heat transfer, Turbulence and Combustion. 1983, Elsevier. p. 96-116.
    [24] Orszag, S.A., “Renormalisation group modelling and turbulence simulations”. Near-wall turbulent flows, 1993.
    [25] Chen, H.T., Hsu, L.Y., Yan, W.M., Rashidi, S., and Hung, H.H., “Novel study on inverse convection–conduction heat transfer for plate-finned tube heat exchanger”. Journal of Thermal Analysis and Calorimetry, 2024. pp. 1-16.
    [26] Chen, H.T., Su, W.Y., Zheng, Y.J., Yang, T.S., and Chen, K.X., “Prediction of 3D natural convection heat transfer characteristics in a shallow enclosure with experimental data”. Progress in Nuclear Energy, Vol. 153, 2022. pp. 104425.
    [27] Arpaci, V.S., Kao, S.H., and Selamet, A., “Introduction to Heat Transfer”. Prentice Hall. 1999
    [28] Gasia, J., Miró, L., De Gracia, A., Barreneche, C., and Cabeza, L.F., “Experimental evaluation of a paraffin as phase change material for thermal energy storage in laboratory equipment and in a shell-and-tube heat exchanger”. Applied Sciences, Vol. 6(4), 2016. pp. 112.
    [29] Fluent, A., “Ansys fluent theory guide”. Ansys Inc., USA, 15317, 2011. pp. 724-746.
    [30] Fishenden, M. and Saunders, O.A., “An Introduction to Heat Transfer”. 1950.
    [31] M. Peksen, 3D transient multiphysics modelling of a complete high temperature fuel cell system using coupled CFD and FEM, Int. J. Hydrogen Energy, vol. 39, 2014. pp. 5137-5147.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE