簡易檢索 / 詳目顯示

研究生: 陳嘉信
Chen, Chia-Shin
論文名稱: 蒸汽腔室沸騰表面結構對熱傳性能之探討
Experimental Study of Heat Transfer Performance of Vapor Chamber with Structured Enhanced Surfaces
指導教授: 陳世雄
Chen, Shih-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 127
中文關鍵詞: 蒸汽腔室池沸騰
外文關鍵詞: pool boiling, vapor chamber
相關次數: 點閱:55下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗探討蒸汽腔對於高度集中熱源散熱之助益,以池沸騰形式將熱量均勻攜帶至大面積冷凝面,再以水冷卻模組作為蒸汽室之冷凝端,透過高性能沸騰表面與水在低於常壓下之沸騰特性,能在有限的沸騰空間內降低系統熱阻值。實驗參數由改變沸騰表面之結構密度與填充水量,於兩種不同熱源密度之加熱器實驗,結果顯示愈集中之熱源,此種散熱模組有愈佳的熱傳性能,並且適中的鰭片密度與填充水量能得到最低的熱阻值。此外,由於低壓下水之汽化體積膨脹十分顯著,在實驗設定沸騰空間內能有效干擾冷凝端之液膜附著,而造成額外之熱傳性能提升。

     The experimental study is to discuss the heat transfer performance of vapor chamber on highly concentrated heat source. Heat was transferred from evaporator to wide area condenser by pool boiling and then was replaced with water cooling system. Thermal resistance can be efficiently decreased in confined space vapor chamber by way of enhanced boiling surfaces and the characteristic of water boiling under low pressure. The variation of experimental parameters was working fluid volume, density of structured boiling surfaces and heat source. The result shows that the thermal performance is more effective for a more concentrated heat source. Moreover, best thermal resistance can be achieved at appropriate density of structured surfaces and amount of working fluid applied. In addition, the apparent increase of vapor volume at low chamber pressure may interfere the condensed liquid film at present low chamber height design, and lead to extra thermal performance improvement.

    中文摘要.........................................I 英文摘要........................................II 致謝...........................................III 目錄.............................................V 表目錄........................................VIII 附圖目錄........................................IX 符號說明......................................XIII 緒論.............................................1 1-1研究動機與目的................................1 1-2文獻回顧......................................3 第二章 理論分析................................13 2-1 實驗原理....................................13 2-2 池沸騰理論..................................15 2-2-1氣泡成核與成長...........................16 2-2-2氣泡脫離直徑.............................19 2-2-3氣泡脫離頻率.............................22 2-2-4有效成核密度.............................25 2-3 熱阻抗......................................27 2-3-1蒸汽腔冷凝端熱阻抗.........................30 2-3-2水冷端熱阻抗...............................32 2-3-3蒸汽腔沸騰表面熱阻抗.......................34 2-4 氣孔表面結構之沸騰理論......................41 第三章 實驗設備與量測方法.......................45 3-1 實驗模型....................................45 3-2 量測設備....................................47 3-3 實驗階段與參數..............................48 3-4實驗方法與步驟...............................51 3-4-1蒸汽腔、水冷模組量測實驗...................52 3-4-2 熱散逸實驗................................55 3-4-3環境水溫影響量測...........................55 3-4-4蒸汽腔內壓力量測實驗.......................56 第四章 結果與討論...............................57 4-1水冷模組與蒸汽腔結合模組性能討論.............59 4-2 結構表面密度對熱傳性能影響..................61 4-3 充填水量對熱傳性能影響......................68 第五章結論與未來工作............................77 5-1結論.........................................77 5-2未來工作.....................................79 參考文獻........................................81 附表...........................................126

    【1】Bainton, K.F., 1965, “Experimental Heat Pipes,” AERE-M1610, Harwell, Berk, Atomic Energy Establishment, Physics Div, June.

    【2】Berenson, P., 1960, “Transition Boiling Heat Transfer from a Horizontal Surface,” Ph.D. Thesis, Massachussetts Institute of Technology, Cambridge, Mass.

    【3】Bonjour, J. and Lallemand, M., 1998, “Flow Patterns during Boiling in a Narrow Space between Two Vertical Surfaces,” International Journal of Multiphase Flow, Vol.24, pp.947-960.

    【4】Brown, W.T., 1967, “Study of Flow Surface Boiling,” Ph.D. Thesis, Mechanical Engineering Department, M.I.T.

    【5】Busse, C.A., Caron, R. and Cappelletti, C., 1965, “Prototypes of Heat Pipe Thermionic Converters for Space Reactors,” IEEE, Conf. on Thermionic Electrical Power Generation, London.

    【6】Carey, V.P., 1992, Liquid-Vapor Phase Change Phenomena, Ch.3&5, Taylor & Francis, Bristol, Pa, USA.

    【7】Chi, S.W., 1976, “Heat Pipe Theory and Practice: A Sourcebook,” Hemisphere Pub. Corp., Washington, DC.

    【8】Chien, L.H. and Webb, R.L., 1994, “Measurement of Bubble Dynamics on an Enhanced Boiling Surface,” Experiment Thermal and Fluid Science, Vol.8, pp.167-174.

    【9】Chien, L.H. and Webb, R.L., 1998, “Measurement of Bubble Dynamics on an Enhanced Boiling Surface,” Experiment Thermal and Fluid Science, Vol.16, p.177-186.

    【10】Chien, L.H. and Webb, R.L., 1998, “A Nucleate Boiling Model for Structured Enhanced Surfaces,” International Journal of Heat and Mass Transfer, Vol.41, No.14, pp.2183-2195.

    【11】Chato, J.C., 1962, “Laminar Condensation inside Horizontal and Inclined Tubes,” ASHRAE J., Vol.4, pp.52-60.

    【12】Chyu, M.C., 1987, “Evaporation of Macrolayer in Nucleate Boiling near Burnout,” International Journal of Heat and Mass Transfer, Vol.30, pp.1531-1538.

    【13】Cole, R. and Rohsenow, W.M., 1968, “Correlation of Bubble Diameters for Boiling of Saturated Liquids,” Chemical Engineering Progress Symposium Series, Vol.65, No.92, pp.211-213.

    【14】Cooper, M.G., 1969, “The Microlayer and Bubble Bubble Growth in Nucleate Boiling,” International Journal of Heat and Mass Transfer, Vol.12, pp.915-933.

    【15】Deverall, J.E., Salmi, E.W. and Knapp, R.J., 1976, “Heat-Pipe Performance in a Zero Gravity Field,” J. of Spacecraft and Rockets.

    【16】Forster, H.K. and Zuber, N., 1954, “Growth of a Vapor Bubble in Superheated Liquids,” J. Appl. Phys., vol.25, pp.471-478.

    【17】Fritz, W., 1935, “Berechnung des Maximal Volume von Dampfblasen,” Phys. Z., Vol.36, pp.379. (Paper reviewed in Collier & Thome, 1994)

    【18】Fujita, Y., Ohta, H., Uchida, S. and Nishkawa, K., 1988, “Nucleate Boiling Heat Transfer and Critical Heat Flux in Narrow Space Rectangular Surfaces,” International Journal of Heat and Mass Transfer, Vol.31, No.2, pp.229-239.

    【19】Gaertner, R.F., 1965, “Photographic Study of Nucleate Pool Boiling on a Horizontal Surface,” Journal of Heat Transfer, Vol.87, pp.17-29.

    【20】Gaugler, G.M., “Heat Transfer Devices, 1942, ” US Patent 2350348, Appl.21 December, Published 6 June 1996.

    【21】Griffith, P., 1983, “Dropwise Condensation,” in E. U. Schlunder, Ed-in-Chief, Heat Exchanger Design Handbook, Hemisphere Publishing, New York, Vol. 2, Chap. 2.6.5.

    【22】Grover, G.M., 1963, “Evaporation-Condensation Heat Transfer Device,” US Patent 3229759, Appl.2 December, Published 18 January 1996.

    【23】Guglielmini, G., Misale, M. and Schenone, C., 2002, “Boiling of Saturated FC-72 on Square Pin Fin Arrays,” International Journal of Thermal Sciences, Vol.41, pp.599-608.

    【24】Haider, I. and Webb, R.L., 1997, “A Transient Micro-Convection Model of Nucleate Pool Boiling,” International Journal of Heat and Mass Transfer, Vol.40, No.15, pp.3675-3688.

    【25】Han, C.Y. and Griffith, P., 1965, “The Mechanism of Heat Transfer in Nucleate Pool Boiling-Part II,” International Journal of Heat and Mass Transfer, Vol.8, pp.905-914.

    【26】Haramura, Y. and Katto, Y., 1983, ”A New Hydrodynamic Model of Critical Heat Flux Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquid,” International Journal of Heat and Mass Transfer, Vol.26, pp.389-399.

    【27】Honda, H. and Wei, J.J., 2004, “Enhanced Boiling Heat Transfer from Electronic Components by use of Surface Microstructures,” Experimental Thermal and Fluid Science, Vol.28, pp.159-169.

    【28】Hsu, Y.Y., 1962, “On the Size Range of Active Nucleation Cavities on a Heating Surface,” Journal of Heat Transfer, Vol.84, pp.207-216.

    【29】Ishibashi, E. and Nishikawa, K., 1969, “Saturate Boiling Heat Transfer in Narrow Spaces,” International Journal of Heat Mass Transfer, Vol.12, No.8, pp.863-894.

    【30】Kemme, J.E., “Ultimate Heat Pipe Performance,” IEEE Thermionic Conversion Specialist Conference, Framingham, Massachusetts, October 21-23, 1968.

    【31】Kruzhilin, G.N., 1947, “Free-Convection Transfer of Heat from a Horizontal Plate and Boiling Liquid,” Doklady AN SSSR (Reports of the USSR Academy of Science), Vol.58, No.8, pp.1657-1660 (in Russian).

    【32】Kutateladze, S.S. and Borishanskii, V.M., 1966, “A Concise Encyclopedia of Heat Transfer,” Pergamon Press, New York, NY, USA, Chapter12.

    【33】Kutateladze, S.S., 1990, “Heat Transfer and Hydrodynamic Resistance: Handbook,” Energoatomizdat Publishing House, Moscow, Russia, Chapter 12.7

    【34】Labuntsov, D.A., 1972, “Heat Transfer Problems with Nucleate Boiling of Liquids,” Thermal Engineering, Vol.19, No.9, pp.21-28 (in Russian).

    【35】Mikic, B.B. and Rohsenow, W.M., 1969, “A New Correlation of Pool Boiling Data including the Effect of Heating Surface Characteristics,” ASME J. of Heat Transfer, Vol.91, pp.245-250.

    【36】Mikic, B.B., Rohsenow, W.M. and Griffith, P., 1969, “On Bubble Growth Rates,” International Journal of Heat Mass Transfer, Vol.13, pp.657-666.

    【37】Moore, F.D. and Mesler, R.B., 1961, “The Measurement of Rapid Surface Temperature Fluctuations during Nucleate Boiling of Water,” American Institute of Chemical Engineers Journal, Vol.7, pp.620-624.

    【38】Nae-Hyun Kim and Kuk-Kwang Choi, 2001, “Nucleate Pool Boiling on Structured Enhanced Tubes Having Pores with Connection Gaps,” International Journal of Heat and Mass Transfer, Vol.44, pp.17-28

    【39】Nakayama, W., Daikoku, T., Kuwahara, H. and Nakajima, T., 1980, “Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces Part II: Analytical Modeling,” ASME J. Heat Transfer, Vol.102, pp.451-456.

    【40】Nukiyama, S., 1934, “The Maximum and Minimum Values of Heat Transmitted from Metal to Boiling Water under Atmospheric Pressure,” International Journal of Heat Mass Transfer, Vol.9, pp.1419.

    【41】Pan, C. and Lin, T.L., 1989, “Marangoni Flow on Pool Boiling Near Critical Heat Flux,” Int. Comm. in Heat Mass Transfer, Vol.16, pp.475-486.

    【42】Pioro, I.L., 1999, “Experimental Evaluation of Constants for the Rohsenow Pooling Correlation,” International Journal of Heat Mass Transfer, Vol.42, pp.2003-2013.

    【43】Pioro, I.L., 2004, “Nucleate Pool-Boiling Heat Transfer I: Review of Parametric Effects of Boiling Surface,” International Journal of Heat Mass Transfer, Vol.47, pp.5033-5044.

    【44】Pioro, I.L., 2004, “Nucleate Pool-Boiling Heat Transfer II: Assessment of Prediction Methods,” International Journal of Heat Mass Transfer, Vol.47, pp.5045-5057.

    【45】Plesset, M. and Zwick, S.A., 1954, “Growth of Vapor Bubbles in Superheated Liquids,” Journal of Applied Physics, Vol.25, pp.493-500

    【46】Rainey, K.N., You, S.M. and Lee, S., 2003, “Effect of Pressure, Subcooling, and Dissolved Gas on Pooling Heat Transfer from Microporous, Square Pin-Finned Surfaces in FC-72,” International Journal of Heat Mass Transfer, Vol.46, pp.23-35.

    【47】Ramaswamy, C., Joshi, Y., Nakayama, W. and Johnson, W.B., 2002, “High-Speed Visualization of Boiling from an Enhanced Stucture,” International Journal of Heat Mass Transfer, Vol.45, pp.4761-4771.

    【48】Ramaswamy, C., Joshi, Y., Nakayama, W. and Johnson, W.B., 2003, “Semi-Analytical Model for Boiling from Enhanced Structures,” International Journal of Heat Mass Transfer, Vol.46, pp.4257-4269.

    【49】Rohsenow, W.M., 1952, “A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids,” Transactions of the ASME, Vol.74, pp.969-796.

    【50】Surapong Chatpun, Makoto Watanabe and Masahiro Shoji, 2004, “Experimental Study on Characteristics of Nucleate Pooling Boiling by the Effects of Cavity Arrangement,” International Journal of Experimental Thermal and Fluid Science, Vol.29, pp.33-40.

    【51】Thome, J.R., 1990, “Enhanced Boiling Heat Transfer,” Hemisphere Publishing, New York.

    【52】Wang, F.M. and Pan, C., 1992, “Thermocapillary Driven Flow in the Macrolayer for Nucleate Boiling at High Heat Fluxes,” Transport Phenomena in Heat and Mass Transfer, Vol.1, pp.550-561, Ed. J.A. Reizes, Elsevier Science Publisher, Amsterdam.

    【53】Webb, R.L., 1994, “Principles of Enhanced Heat Transfer,” John Wiley & Sons, New York.

    【54】Yang, S. R. and Kim, R.H., 1988, “A Mathematical Model of the Pool Boiling Nucleation Site Density in Terms of the Surface Characteristics,” International Journal of Heat Mass Transfer, Vol.31, pp.1127-1135.

    【55】Yao, S.C. and Chang, Y., 1983, “Pool Boiling Heat Transfer in a Confined Space,” International Journal of Heat Mass Transfer, Vol.26, No.6, pp.841-848.

    【56】Zhang Lei and Masahiro Shoji, 2003, “Nucleation Site Interaction in Pool Boiling on the Artificial Surface,” International Journal of Heat Mass Transfer, Vol.46, pp.513-522.

    下載圖示 校內:2006-08-13公開
    校外:2008-08-13公開
    QR CODE