簡易檢索 / 詳目顯示

研究生: 邵時傑
Shao, Shih-Chieh
論文名稱: 利用長庚醫學研究資料庫進行藥物效果比較研究: 以第二型糖尿病人接受Empagliflozin和Dapagliflozin 治療後的心血管事件為例
Comparative Drug Effectiveness Studies Using the Chang Gung Research Database: Comparison of Cardiovascular Events between Empagliflozin and Dapagliflozin in Patients with Type 2 Diabetes as an Example
指導教授: 賴嘉鎮
Lai, Chia-Cheng
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 101
中文關鍵詞: 長庚醫學研究資料庫研究效度藥物比較研究第二型鈉-葡萄糖共同轉運蛋白抑制劑重大不良心血管事件心衰竭住院
外文關鍵詞: Chang Gung Research Database, study validity, comparative drug effectiveness research, sodium glucose co-transporter 2 inhibitors, major adverse cardiovascular events, hospitalization due to heart failure
相關次數: 點閱:65下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:真實世界證據可做為臨床決策參考,而我國常用的數據資料庫包含保險申報數據及醫院電子病歷資料。長庚醫學研究資料庫為台灣藥物比較研究的重要醫院電子病歷資料來源,但運用於藥物流行病學的研究實例有限。第二型鈉-葡萄糖共同轉運蛋白抑制劑為近年糖尿病治療之突破性新藥,臨床試驗證實可降低重大心血管不良事件及心衰竭發生風險,但不同藥物間的效果可能存有差異。
    目的:以比較不同第二型鈉-葡萄糖共同轉運蛋白抑制劑(empagliflozin和dapagliflozin) 的心血管事件效果為例,善用長庚醫學研究資料庫之電子病歷資料優點來增加藥物比較研究的效度。
    方法:本研究使用長庚醫學研究資料庫進行回溯性世代研究。首先利用2016-2017年間的資料,納入首次接受empagliflozin或dapagliflozin 的第二型糖尿病且過去未有動脈粥樣硬化心血管疾病史 (包含冠心病、缺血性中風和周邊動脈疾病) 及心衰竭病人,利用多變項COX迴歸分析比較用藥後首次發生重大不良心血管事件 (包含心因性死亡、心肌梗塞、缺血性中風) 和心衰竭的風險。為了驗證研究效度,我們透過電子病歷回顧方式評估研究結果診斷碼的正確性。接續利用2016-2019年間的資料,納入首次接受empagliflozin或dapagliflozin的第二型糖尿病人,利用傾向分數配對分析動脈粥樣硬化心血管疾病史是否會影響用藥後心衰竭住院的發生風險。為了驗證結果穩健度,我們利用心房利鈉肽數值重新定義心衰竭住院結果,進行敏感度分析。
    結果:第二型糖尿病且過去未有動脈粥樣硬化心血管疾病史的病人接受empagliflozin (n=6,869) 和dapagliflozin (n=5,812) 治療後,病人有相似的重大不良心血管事件發生風險 (hazard ratio, HR: 0.91; 95% CI: 0.73, 1.14),但dapagliflozin會顯著地減少心衰竭發生風險 (HR: 0.68; 95% CI: 0.49, 0.95)。整體而言,重大不良心血管事件和心衰竭的診斷碼正確率為75.0-95.8%,研究結果定義適當。利用傾向分數配對分析9,586組接受empagliflozin和dapagliflozin治療的第二型糖尿病病人後,發現動脈粥樣硬化心血管疾病史會造成empagliflozin和dapagliflozin治療後有不同的心衰竭住院風險 (p-value: 0.0097)。病人過去沒有動脈粥樣硬化心血管疾病史時,dapagliflozin會有顯著較低的心衰竭住院發生風險 (HR: 0.67; 95% CI: 0.49, 0.90);過去有動脈硬化心血管疾病史時,empagliflozin和dapagliflozin治療後有相似的心衰竭住院發生風險 (HR: 1.12; 95% CI: 0.87, 1.45)。利用心房利鈉肽數值進行心衰竭住院的重新定義後,分析結果與主分析相似。
    結論:本研究以empagliflozin和dapagliflozin的藥物比較研究為例,利用長庚醫學研究資料庫電子病歷資料特性,驗證重大不良心血管事件的診斷碼定義有足夠正確性,並發現dapagliflozin可能會有較低的心衰竭發生風險。此外。動脈粥樣硬化心血管疾病史可能會影響SGLT2抑制劑改善心衰竭住院風險的比較效果,應用生化檢驗數據的敏感度分析亦驗證結果的穩健度。

    Background: Real-world evidence can serve as an important reference for clinical decisions, with common data sources including claims data and electronic medical records (EMR) in Taiwan. The Chang Gung Research Database (CGRD) is an important source of EMR data for comparative drug effectiveness research in Taiwan, but related examples are limited. Sodium glucose co-transporter 2 (SGLT2) inhibitors, which are breakthrough novel drugs for type 2 diabetes (T2D), have been proven to have beneficial effects on major adverse cardiovascular events (MACE) and heart failure outcomes in patients with T2D, but the treatment effects of individual SGLT2 inhibitors may differ.
    Purpose: To take advantage of CGRD to increase study validity, by comparing cardiovascular disease event effects in T2D patients who are newly initiating different SGLT2 inhibitors (i.e., empagliflozin and dapagliflozin) as an example.
    Methods: This retrospective cohort study analyzed Taiwan’s CGRD. First, we included T2D patients who were newly receiving empagliflozin and dapagliflozin from 2016 to 2017, but had no baseline history of heart failure or atherosclerotic cardiovascular diseases (ASCVD) such as coronary heart disease, ischemic stroke and peripheral artery diseases. We applied multivariable Cox proportional hazards models to calculate the effects on MACE and heart failure. To confirm the study validity, we reviewed the original EMRs from the CGRD to assess the accuracy of outcome coding. Second, we included all T2D patients who were newly receiving empagliflozin or dapagliflozin from 2016 to 2019. We performed propensity-score matching methods to evaluate if a baseline history of ASCVD modified the effects with regard to hospitalization due to heart failure (hHF), comparing between empagliflozin and dapagliflozin. To confirm the result robustness, we re-defined the hHF outcomes by incorporating levels of B-type Natriuretic Peptide (BNP) in the sensitivity analysis.
    Results: We found similar MACE effects (hazard ratio, HR: 0.91; 95% CI: 0.73, 1.14) for empagliflozin (n=6,869) and dapagliflozin (n=5,812), but observed a lower incidence of heart failure with dapagliflozin (HR: 0.68; 95% CI: 0.49, 0.95) in patients with no ASCVD history at baseline. In our cohort of 9,586 propensity-score matched pairs of empagliflozin and dapagliflozin new users, we found that a baseline history of ASCVD modified the hHF effects differently for the two SGLT2 inhibitors (p-value for interaction: 0.0097). In patients without baseline history of ASCVD, there was a lower incidence of hHF in those receiving dapagliflozin (HR: 0.67; 95% CI: 0.49, 0.90), while similar incidence was found in patients with a baseline history of ASCVD (HR: 1.12; 95% CI: 0.87, 1.45). Results from the sensitivity analysis were consistent with the main analysis.
    Conclusion: Based on the example of a comparison between empagliflozin and dapagliflozin, this study found that the coding validity of MACE outcomes could be optimized by reviewing the original EMR from the CGRD. It also found a lower incidence of heart failure with dapagliflozin use, and that a baseline ASCVD history may modify the hHF effects of the two studied SGLT2 inhibitors. The sensitivity analysis incorporating BNP levels confirmed the result robustness.

    Chinese Abstract i English Abstract iii Acknowledgements v Contents vi Table Index ix Figure Index x Appendix Table Index xi Appendix Figure Index xii Chapter 1. Introduction 1.1 Introduction to the Chang Gung Research Database 1 1.2 Comparisons between Chang Gung Research Database and Taiwan’s National Health Insurance Research Database 1 1.3 Data representativeness of Chang Gung Research Database 3 1.4 Validation of diagnosis codes in the Chang Gung Research Database 3 1.5 Benefit of using Chang Gung Research Database for real-world studies 4 1.6 Comparative drug effectiveness research using Chang Gung Research Database 5 1.7 Research questions 7 1.8 Specific aims 8 Chapter 2. Literature Review 2.1 Background 10 2.1.1 Pharmacological actions of SGLT2 inhibitors 10 2.1.2 Pharmacokinetics of SGLT2 inhibitors 11 2.2 SGLT2 inhibitors and cardiovascular outcomes 13 2.2.1 Clinical trials 13 2.2.2 Real-world studies 16 2.2.3 Therapeutic roles in practice guidelines 18 2.3 Real-world prescribing patterns of SGLT2 inhibitors 19 2.4. Possible different magnitudes of treatment effects for cardiovascular events among SGLT2 inhibitors 19 2.4.1 Pharmacokinetic differences 19 2.4.2 Atherosclerotic cardiovascular disease history 20 Chapter 3. Methods 3.1 Comparison of cardiovascular event effects associated with dapagliflozin and empagliflozin in patients with type 2 diabetes 22 3.1.1 Study design 22 3.1.2 Outcome definition and follow-up 23 3.1.3 Validation of outcome definitions 23 3.1.4 Covariates 23 3.1.5 Unmeasured confounders 24 3.1.6 Statistical analysis 24 3.1.7 Sensitivity and subgroup analyses 25 3.2 Differences in outcome of hospitalization for heart failure after SGLT2 inhibitor treatment: effect modification by atherosclerotic cardiovascular disease 26 3.2.1 Study design 26 3.2.2 Outcome definition and follow-up 27 3.2.3 Covariates 27 3.2.4 Unmeasured confounders 28 3.2.5 Statistical analysis 28 3.2.6 Sensitivity analyses 29 Chapter 4. Results 30 4.1 Comparison of cardiovascular event effects associated with dapagliflozin and empagliflozin in patients with type 2 diabetes 30 4.1.1 Baseline characteristics 30 4.1.2 Main outcomes 30 4.1.3 Sensitivity and subgroup analyses 31 4.2 Differences in outcome of hospitalization for heart failure after SGLT2 inhibitor treatment: effect modification by atherosclerotic cardiovascular disease 32 4.2.1 Baseline characteristics 32 4.2.2 Main outcomes 32 4.2.3 Sensitivity analysis 33 Chapter 5. Discussion 5.1 Comparison of cardiovascular event effects associated with dapagliflozin and empagliflozin in patients with type 2 diabetes 34 5.1.1 General findings 34 5.1.2 Strengths and limitations 37 5.2 Differences in outcome of hospitalization for heart failure after SGLT2 inhibitor treatment: effect modification by atherosclerotic cardiovascular disease 39 5.2.1 General findings 39 5.2.2 Strengths and limitations 42 Chapter 6. Summary of findings and implications for future studies 44 Chapter 7. References 46

    1. Shao SC, Chan YY, Kao Yang YH, et al. The Chang Gung Research Database-A multi-institutional electronic medical records database for real-world epidemiological studies in Taiwan. Pharmacoepidemiol Drug Saf 2019;28:593-600.
    2. Hsieh CY, Su CC, Shao SC, et al. Taiwan's National Health Insurance Research Database: past and future. Clin Epidemiol 2019;11:349-358.
    3. Hsiao FC, Ho CT, Lin CP, et al. Revascularization in Patients With Non-ST Elevation Myocardial Infarction and Advanced Chronic Kidney Disease. Mayo Clin Proc 2023;98:122-133.
    4. Lai EC, Lin TC, Lange JL, et al. Effectiveness of denosumab for fracture prevention in real-world postmenopausal women with osteoporosis: a retrospective cohort study. Osteoporos Int 2022;33:1155-1164.
    5. Shao SC, Lin YH, Chang KC, et al. Sodium glucose co-transporter 2 inhibitors and cardiovascular event protections: how applicable are clinical trials and observational studies to real-world patients? BMJ Open Diabetes Res Care 2019;7:e000742.
    6. Weinstein EJ, Ritchey ME, Lo Re V, 3rd. Core concepts in pharmacoepidemiology: Validation of health outcomes of interest within real-world healthcare databases. Pharmacoepidemiol Drug Saf 2023;32:1-8.
    7. Chao HY, Liu PH, Lin SC, et al. Association of In-Hospital Mortality and Dysglycemia in Septic Patients. PLoS One 2017;12:e0170408.
    8. Lin YS, Chen TH, Chi CC, et al. Different Implications of Heart Failure, Ischemic Stroke, and Mortality Between Nonvalvular Atrial Fibrillation and Atrial Flutter-a View From a National Cohort Study. J Am Heart Assoc 2017;6:e006406.
    9. Chiang MY, Shao SC, Liao SC. Validation of Diagnostic Codes to Identify Carbon Monoxide Poisoning in Taiwan's Claims Data. Front Pharmacol 2022;13:882632.
    10. Liao SC, Shao SC, Lai EC, et al. Positive Predictive Value of ICD-10 Codes for Cerebral Venous Sinus Thrombosis in Taiwan's National Health Insurance Claims Database. Clin Epidemiol 2022;14:1-7.
    11. Huang YT, Chen YJ, Chang SH, et al. Discharge status validation of the Chang Gung Research database in Taiwan. Biomed J 2022;45:907-913.
    12. Chang SL, Huang YL, Lee MC, et al. Association of Varicose Veins With Incident Venous Thromboembolism and Peripheral Artery Disease. Jama 2018;319:807-817.
    13. Chung YS, Shao SC, Chi MH, et al. Comparative cardiometabolic risk of antipsychotics in children, adolescents and young adults. Eur Child Adolesc Psychiatry 2021;30:769-783.
    14. Kupersmith J, Ommaya AK. The past, present, and future of comparative effectiveness research in the US Department of Veterans Affairs. Am J Med 2010;123:e3-7.
    15. Ramagopalan SV, Simpson A, Sammon C. Can real-world data really replace randomised clinical trials? BMC Med 2020;18:13.
    16. Storm NE, Chang W, Lin TC, et al. A Novel Case Study of the Use of Real-World Evidence to Support the Registration of an Osteoporosis Product in China. Ther Innov Regul Sci 2022;56:137-144.
    17. Patorno E, Schneeweiss S, Gopalakrishnan C, et al. Using Real-World Data to Predict Findings of an Ongoing Phase IV Cardiovascular Outcome Trial: Cardiovascular Safety of Linagliptin Versus Glimepiride. Diabetes Care 2019;42:2204-2210.
    18. Shao SC, Chang KC, Lin SJ, et al. Favorable pleiotropic effects of sodium glucose cotransporter 2 inhibitors: head-to-head comparisons with dipeptidyl peptidase-4 inhibitors in type 2 diabetes patients. Cardiovasc Diabetol 2020;19:17.
    19. McCormick N, Lacaille D, Bhole V, et al. Validity of heart failure diagnoses in administrative databases: a systematic review and meta-analysis. PLoS One 2014;9:e104519.
    20. Chen TH, Li YR, Chen SW, et al. Sodium-glucose cotransporter 2 inhibitor versus metformin as first-line therapy in patients with type 2 diabetes mellitus: a multi-institution database study. Cardiovasc Diabetol 2020;19:189.
    21. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010;375:2215-22.
    22. ElSayed NA, Aleppo G, Aroda VR, et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2023. Diabetes Care 2023;46:S140-s157.
    23. McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes: A Meta-analysis. JAMA Cardiol 2021;6:148-158.
    24. Täger T, Frankenstein L, Atar D, et al. Influence of receptor selectivity on benefits from SGLT2 inhibitors in patients with heart failure: a systematic review and head-to-head comparative efficacy network meta-analysis. Clin Res Cardiol 2022;111:428-439.
    25. Castellana M, Procino F, Sardone R, et al. Generalizability of sodium-glucose co-transporter-2 inhibitors cardiovascular outcome trials to the type 2 diabetes population: a systematic review and meta-analysis. Cardiovasc Diabetol 2020;19:87.
    26. Low Wang CC, Hess CN, Hiatt WR, et al. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus - Mechanisms, Management, and Clinical Considerations. Circulation 2016;133:2459-502.
    27. Aune D, Schlesinger S, Neuenschwander M, et al. Diabetes mellitus, blood glucose and the risk of heart failure: A systematic review and meta-analysis of prospective studies. Nutr Metab Cardiovasc Dis 2018;28:1081-1091.
    28. Patorno E, Pawar A, Franklin JM, et al. Empagliflozin and the Risk of Heart Failure Hospitalization in Routine Clinical Care. Circulation 2019;139:2822-2830.
    29. Seino Y, Kim DJ, Yabe D, et al. Cardiovascular and renal effectiveness of empagliflozin in routine care in East Asia: Results from the EMPRISE East Asia study. Endocrinol Diabetes Metab 2021;4:e00183.
    30. Hinton W, Ansari AS, Whyte MB, et al. Sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: Are clinical trial benefits for heart failure reflected in real-world clinical practice? A systematic review and meta-analysis of observational studies. Diabetes Obes Metab 2023;25:501-515.
    31. Chung MC, Hung PH, Hsiao PJ, et al. Association of Sodium-Glucose Transport Protein 2 Inhibitor Use for Type 2 Diabetes and Incidence of Gout in Taiwan. JAMA Netw Open 2021;4:e2135353.
    32. Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183:109119.
    33. Ceriello A, Catrinoiu D, Chandramouli C, et al. Heart failure in type 2 diabetes: current perspectives on screening, diagnosis and management. Cardiovasc Diabetol 2021;20:218.
    34. Xu B, Li S, Kang B, et al. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. Cardiovasc Diabetol 2022;21:83.
    35. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015;75:33-59.
    36. Tahrani AA, Bailey CJ, Del Prato S, et al. Management of type 2 diabetes: new and future developments in treatment. Lancet 2011;378:182-97.
    37. Choi CI. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors from Natural Products: Discovery of Next-Generation Antihyperglycemic Agents. Molecules 2016;21:1136.
    38. Joshi SS, Singh T, Newby DE, et al. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart 2021;107:1032-8.
    39. Patel DK, Strong J. The Pleiotropic Effects of Sodium-Glucose Cotransporter-2 Inhibitors: Beyond the Glycemic Benefit. Diabetes Ther 2019;10:1771-1792.
    40. Meng W, Ellsworth BA, Nirschl AA, et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 2008;51:1145-9.
    41. Anker SD, Butler J. Empagliflozin, calcium, and SGLT1/2 receptor affinity: another piece of the puzzle. ESC Heart Fail 2018;5:549-551.
    42. Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci 2020;5:632-644.
    43. Scheen AJ. Pharmacokinetics, Pharmacodynamics and Clinical Use of SGLT2 Inhibitors in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Clin Pharmacokinet 2015;54:691-708.
    44. Takeuchi M, Ogura M, Inagaki N, et al. Initiating SGLT2 inhibitor therapy to improve renal outcomes for persons with diabetes eligible for an intensified glucose-lowering regimen: hypothetical intervention using parametric g-formula modeling. BMJ Open Diabetes Res Care 2022;10:e002636.
    45. Tahara A, Takasu T, Yokono M, et al. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. J Pharmacol Sci 2016;130:159-69.
    46. Ma CX, Ma XN, Guan CH, et al. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol 2022;21:74.
    47. Brown A, Reynolds LR, Bruemmer D. Intensive glycemic control and cardiovascular disease: an update. Nat Rev Cardiol 2010;7:369-75.
    48. McMurray JJ, Gerstein HC, Holman RR, et al. Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol 2014;2:843-51.
    49. Sharma A, Pagidipati NJ, Califf RM, et al. Impact of Regulatory Guidance on Evaluating Cardiovascular Risk of New Glucose-Lowering Therapies to Treat Type 2 Diabetes Mellitus: Lessons Learned and Future Directions. Circulation 2020;141:843-862.
    50. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017;377:644-657.
    51. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015;373:2117-28.
    52. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019;380:347-357.
    53. Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med 2020;383:1425-1435.
    54. Cinti F, Moffa S, Impronta F, et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug Des Devel Ther 2017;11:2905-2919.
    55. Davies MJ, Drexel H, Jornayvaz FR, et al. Cardiovascular outcomes trials: a paradigm shift in the current management of type 2 diabetes. Cardiovasc Diabetol 2022;21:144.
    56. He J, Morales DR, Guthrie B. Exclusion rates in randomized controlled trials of treatments for physical conditions: a systematic review. Trials 2020;21:228.
    57. Birkeland KI, Bodegard J, Norhammar A, et al. How representative of a general type 2 diabetes population are patients included in cardiovascular outcome trials with SGLT2 inhibitors? A large European observational study. Diabetes Obes Metab 2019;21:968-974.
    58. Canivell S, Mata-Cases M, Vlacho B, et al. How Many Patients with Type 2 Diabetes Meet the Inclusion Criteria of the Cardiovascular Outcome Trials with SGLT2 Inhibitors? Estimations from a Population Database in a Mediterranean Area. J Diabetes Res 2019;2019:2018374.
    59. Wittbrodt E, Chamberlain D, Arnold SV, et al. Eligibility of patients with type 2 diabetes for sodium-glucose co-transporter-2 inhibitor cardiovascular outcomes trials: An assessment using the Diabetes Collaborative Registry. Diabetes Obes Metab 2019;21:1985-1989.
    60. Cavender MA, Norhammar A, Birkeland KI, et al. SGLT-2 Inhibitors and Cardiovascular Risk: An Analysis of CVD-REAL. J Am Coll Cardiol 2018;71:2497-2506.
    61. Kohsaka S, Lam CSP, Kim DJ, et al. Risk of cardiovascular events and death associated with initiation of SGLT2 inhibitors compared with DPP-4 inhibitors: an analysis from the CVD-REAL 2 multinational cohort study. Lancet Diabetes Endocrinol 2020;8:606-615.
    62. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022;145:e895-e1032.
    63. Chiang CE, Ueng KC, Chao TH, et al. 2021 Consensus Pathway of the TaiwanВ Society of Cardiology on NovelВ TherapyВ for Type 2 Diabetes. JACC Asia 2021;1:129-146.
    64. PottegГҐrd A, Andersen JH, SГёndergaard J, et al. Changes in use of glucose-lowering drugs: A Danish nationwide study[published online ahead of print, 2022 Dec 13]. Diabetes Obes Metab 2022.
    65. Alkabbani W, Gamble JM. Prescribing Trends of the Sodium-Glucose Cotransporter-2 Inhibitors Among Different Physician Specialties in Canada (2015-2021). Can J Diabetes 2022;S1499-2671(22)00432-4.
    66. Adhikari R, Jha K, Dardari Z, et al. National Trends in Use of Sodium-Glucose Cotransporter-2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists by Cardiologists and Other Specialties, 2015 to 2020. J Am Heart Assoc 2022;11:e023811.
    67. Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes Metab 2018;20:458-462.
    68. Zaccardi F, Webb DR, Htike ZZ, et al. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab 2016;18:783-94.
    69. Heald AH, Fryer AA, Anderson SG, et al. Sodium-glucose co-transporter-2 inhibitors, the latest residents on the block: Impact on glycaemic control at a general practice level in England. Diabetes Obes Metab 2018;20:1659-1669.
    70. Weber MA, Mansfield TA, Cain VA, et al. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol 2016;4:211-220.
    71. Tikkanen I, Narko K, Zeller C, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 2015;38:420-8.
    72. Muntner P, Whittle J, Lynch AI, et al. Visit-to-Visit Variability of Blood Pressure and Coronary Heart Disease, Stroke, Heart Failure, and Mortality: A Cohort Study. Ann Intern Med 2015;163:329-38.
    73. Wang J, Shi X, Ma C, et al. Visit-to-visit blood pressure variability is a risk factor for all-cause mortality and cardiovascular disease: a systematic review and meta-analysis. J Hypertens 2017;35:10-17.
    74. Zheng H, Liu M, Li S, et al. Sodium-Glucose Co-Transporter-2 Inhibitors in Non-Diabetic Adults With Overweight or Obesity: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021;12:706914.
    75. Shao SC, Chang KC, Chien RN, et al. Effects of sodium-glucose co-transporter-2 inhibitors on serum alanine aminotransferase levels in people with type 2 diabetes: A multi-institutional cohort study. Diabetes Obes Metab 2020;22:128-134.
    76. Shao SC, Kuo LT, Chien RN, et al. SGLT2 inhibitors in patients with type 2 diabetes with non-alcoholic fatty liver diseases: an umbrella review of systematic reviews. BMJ Open Diabetes Res Care 2020;8:e001956.
    77. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019;393:31-39.
    78. Palmer SC, Tendal B, Mustafa RA, et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. Bmj 2021;372:m4573.
    79. Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular Events Associated With SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL 2 Study. J Am Coll Cardiol 2018;71:2628-2639.
    80. Birkeland KI, Jorgensen ME, Carstensen B, et al. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol 2017;5:709-717.
    81. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 2005;43:1130-9.
    82. Harel O, Zhou XH. Multiple imputation: review of theory, implementation and software. Stat Med 2007;26:3057-77.
    83. Ueda P, Svanstrom H, Melbye M, et al. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study. Bmj 2018;363:k4365.
    84. Prasad V, Jena AB. Prespecified falsification end points: can they validate true observational associations? Jama 2013;309:241-2.
    85. Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiology 2010;21:383-8.
    86. Chamberlain AM, Agarwal SK, Folsom AR, et al. Smoking and incidence of atrial fibrillation: results from the Atherosclerosis Risk in Communities (ARIC) study. Heart Rhythm 2011;8:1160-6.
    87. Csengeri D, SprГјnker NA, Di Castelnuovo A, et al. Alcohol consumption, cardiac biomarkers, and risk of atrial fibrillation and adverse outcomes. Eur Heart J 2021;42:1170-1177.
    88. Pandey AK, Okaj I, Kaur H, et al. Sodium-Glucose Co-Transporter Inhibitors and Atrial Fibrillation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2021;10:e022222.
    89. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association. 1999;94:496-509.
    90. Haukoos JS, Lewis RJ. The Propensity Score. Jama 2015;314:1637-8.
    91. Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav Res 2011;46:399-424.
    92. Lund JL, Richardson DB, Stürmer T. The active comparator, new user study design in pharmacoepidemiology: historical foundations and contemporary application. Curr Epidemiol Rep 2015;2:221-228.
    93. Das SR, Everett BM, Birtcher KK, et al. 2020 Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 2020;76:1117-1145.
    94. Hollis S, Campbell F. What is meant by intention to treat analysis? Survey of published randomised controlled trials. Bmj 1999;319:670-4.
    95. Gautam S, Agiro A, Barron J, et al. Heart failure hospitalization risk associated with use of two classes of oral antidiabetic medications: an observational, real-world analysis. Cardiovasc Diabetol 2017;16:93.
    96. Kosiborod M, Cavender MA, Fu AZ, et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017;136:249-259.
    97. Birkeland KI, Bodegard J, Banerjee A, et al. Lower cardiorenal risk with sodium-glucose cotransporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes without cardiovascular and renal diseases: A large multinational observational study. Diabetes Obes Metab 2021;23:75-85.
    98. Filion KB, Lix LM, Yu OH, et al. Sodium glucose cotransporter 2 inhibitors and risk of major adverse cardiovascular events: multi-database retrospective cohort study. Bmj 2020;370:m3342.
    99. Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. Jama 1996;275:1557-62.
    100. VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med 2017;167:268-274.
    101. Haneuse S, VanderWeele TJ, Arterburn D. Using the E-Value to Assess the Potential Effect of Unmeasured Confounding in Observational Studies. Jama 2019;321:602-603.
    102. Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med 2008;27:2037-49.
    103. Rassen JA, Shelat AA, Myers J, et al. One-to-many propensity score matching in cohort studies. Pharmacoepidemiol Drug Saf 2012;21 (Suppl 2):69-80.
    104. Stuart EA, Lee BK, Leacy FP. Prognostic score-based balance measures can be a useful diagnostic for propensity score methods in comparative effectiveness research. J Clin Epidemiol 2013;66:S84-S90
    105. Chow SL, Maisel AS, Anand I, et al. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2017;135:e1054-e1091.
    106. Faillie JL. Indication bias or protopathic bias? Br J Clin Pharmacol 2015;80:779-80.
    107. Furtado RHM, Bonaca MP, Raz I, et al. Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction. Circulation 2019;139:2516-2527.
    108. Fitchett D, Inzucchi SE, Cannon CP, et al. Empagliflozin Reduced Mortality and Hospitalization for Heart Failure Across the Spectrum of Cardiovascular Risk in the EMPA-REG OUTCOME Trial. Circulation 2019;139:1384-1395.
    109. Zinman B, Inzucchi SE, Wanner C, et al. Empagliflozin in women with type 2 diabetes and cardiovascular disease - an analysis of EMPA-REG OUTCOME(R). Diabetologia 2018;61:1522-1527.
    110. Clegg LE, Heerspink HJL, Penland RC, et al. Reduction of Cardiovascular Risk and Improved Estimated Glomerular Filtration Rate by SGLT2 Inhibitors, Including Dapagliflozin, Is Consistent Across the Class: An Analysis of the Placebo Arm of EXSCEL. Diabetes Care 2019;42:318-326.
    111. Wang Y, Katzmarzyk PT, Horswell R, et al. Kidney function and the risk of cardiovascular disease in patients with type 2 diabetes. Kidney Int 2014;85:1192-9.
    112. Giugliano D, Meier JJ, Esposito K. Heart failure and type 2 diabetes: From CVOTs, with hope. Diabetes Obes Metab 2019;21:1081-1087.
    113. Home P. Cardiovascular outcome trials of glucose-lowering medications: an update. Diabetologia 2019;62:357-369.
    114. Lytvyn Y, Bjornstad P, Udell JA, et al. Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications, and Summary of Clinical Trials. Circulation 2017;136:1643-1658.
    115. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia 2018;61:2108-2117.
    116. Karg MV, Bosch A, Kannenkeril D, et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc Diabetol 2018;17:5.
    117. Hayashi T, Fukui T, Nakanishi N, et al. Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: comparison with sitagliptin. Cardiovasc Diabetol 2017;16:8.
    118. Soga F, Tanaka H, Tatsumi K, et al. Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc Diabetol 2018;17:132.
    119. Ott C, Jumar A, Striepe K, et al. A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovasc Diabetol 2017;16:26.
    120. Verma S, Garg A, Yan AT, et al. Effect of Empagliflozin on Left Ventricular Mass and Diastolic Function in Individuals With Diabetes: An Important Clue to the EMPA-REG OUTCOME Trial? Diabetes Care 2016;39:e212-e213.
    121. Lim J, Hwang IC, Choi HM, et al. Comparison of cardiovascular and renal outcomes between dapagliflozin and empagliflozin in patients with type 2 diabetes without prior cardiovascular or renal disease. PLoS One 2022;17:e0269414.
    122. Musso G, Gambino R, Cassader M, et al. Efficacy and safety of dual SGLT 1/2 inhibitor sotagliflozin in type 1 diabetes: meta-analysis of randomised controlled trials. Bmj 2019;365:l1328.
    123. Sha S, Polidori D, Farrell K, et al. Pharmacodynamic differences between canagliflozin and dapagliflozin: results of a randomized, double-blind, crossover study. Diabetes Obes Metab 2015;17:188-97.
    124. Yokota S, Tanaka H, Mochizuki Y, et al. Association of glycemic variability with left ventricular diastolic function in type 2 diabetes mellitus. Cardiovasc Diabetol 2019;18:166.
    125. Tanaka A, Node K. Exploration of the clinical benefits of sodium glucose co-transporter 2 inhibitors in diabetic patients with concomitant heart failure. Cardiovasc Diabetol 2018;17:74.
    126. Guo M, Ding J, Li J, et al. SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2018;20:1977-1982.
    127. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016;375:311-22.
    128. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 2019;394:121-130.
    129. Roden M, Weng J, Eilbracht J, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 2013;1:208-19.
    130. List JF, Woo V, Morales E, et al. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 2009;32:650-7.
    131. Baker WL, Buckley LF, Kelly MS, et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on 24-Hour Ambulatory Blood Pressure: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2017;6:e005686.
    132. Lin YH, Huang YY, Hsieh SH, et al. Renal and Glucose-Lowering Effects of Empagliflozin and Dapagliflozin in Different Chronic Kidney Disease Stages. Front Endocrinol (Lausanne) 2019;10:820.
    133. Chowdhury EK, Owen A, Krum H, et al. Systolic blood pressure variability is an important predictor of cardiovascular outcomes in elderly hypertensive patients. J Hypertens 2014;32:525-33.
    134. Vianna AGD, Lacerda CS, Pechmann LM, et al. Improved glycaemic variability and time in range with dapagliflozin versus gliclazide modified release among adults with type 2 diabetes, evaluated by continuous glucose monitoring: A 12-week randomized controlled trial. Diabetes Obes Metab 2020;22:501-511.
    135. Yokota S, Tanaka H, Mochizuki Y, Soga F, Yamashita K, Tanaka Y, et al. Association Of Glycemic Variability With Left Ventricular Diastolic Function In Type 2 Diabetes Mellitus. J Am Coll Cardiol 2019; 73 (9 Supplement 1):764.
    136. Sayour AA, Oláh A, Ruppert M, et al. Characterization of left ventricular myocardial sodium-glucose cotransporter 1 expression in patients with end-stage heart failure. Cardiovasc Diabetol 2020;19:159.
    137. Nakagaito M, Joho S, Ushijima R, et al. Comparison of Canagliflozin, Dapagliflozin and Empagliflozin Added to Heart Failure Treatment in Decompensated Heart Failure Patients With Type 2 Diabetes Mellitus. Circ Rep 2019;1(10):405-413.
    138. Oshima M, Neuen BL, Jardine MJ, et al. Effects of canagliflozin on anaemia in patients with type 2 diabetes and chronic kidney disease: a post-hoc analysis from the CREDENCE trial. Lancet Diabetes Endocrinol 2020;8:903-914.
    139. Prada-Ramallal G, Takkouche B, Figueiras A. Bias in pharmacoepidemiologic studies using secondary health care databases: a scoping review. BMC Med Res Methodol 2019;19:53.
    140. Chung WS, Kung PT, Chang HY, et al. Demographics and medical disorders associated with smoking: a population-based study. BMC Public Health 2020;20:702.
    141. Psaty BM, Boineau R, Kuller LH, et al. The potential costs of upcoding for heart failure in the United States. Am J Cardiol 1999;84:108-9
    142. Benjamin DJ, Berger JO, Johannesson M, et al. Redefine statistical significance. Nat Hum Behav 2018;2:6-10.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE