簡易檢索 / 詳目顯示

研究生: 李昱勳
Lee, Yu-Hsun
論文名稱: RegDerm調節傷口微環境以加速組織再生
RegDerm accelerates tissue regeneration by modulating the wound microenvironment
指導教授: 黃玲惠
Huang, Lynn L.H.
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 86
中文關鍵詞: 傷口癒合發炎糖尿病蘭嶼豬RegDerm
外文關鍵詞: Diabetic wound, Wound healing, RegDerm, Tissue regeneration,, Lanyu pig, Inflammation
相關次數: 點閱:30下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 眾所周知,糖尿病患者的傷口照護上比一般人還困難許多,因血液中含有高糖份的緣故,造成血液循環不良進而導致患者傷口難以癒合,尤其在患者下肢常常發生組織壞死潰爛的情形,甚至面臨截肢的問題,在臨床上已有非常多案例。因此迫切需要有效的方法來治療照護糖尿病患者的傷口,促進組織再生並預防復發性潰瘍。止血、發炎、增生與成熟期是傷口癒合的四個主要階段,尤其是發炎反應在糖尿病患者傷口中比正常傷口更嚴重。巨噬細胞已被證實在發炎期扮演重要角色,許多研究也指出巨噬細胞異常會影響傷口癒合狀況。因此在本篇研究我們以Alloxan誘導建立糖尿病小豬動物模式,然後在其背部建立大小合適的開放性傷口,並用本實驗團隊具有專利的多孔膠原基質RegDerm進行治療,以說明RegDerm的治療效果和機制。結果顯示,我們的RegDerm敷料與市售產品相比有更好的改善傷口癒合能力;在術後1週觀察到使用RegDerm治療的傷口已從底部快速增生新組織了,且修復後的傷口外觀也較為平整。此外我們還進行組織染色觀察巨噬細胞M1/M2的比率,得出結論RegDerm可能是透過減少M1,增加M2方式,整體有調節發炎與促血管新生的作用。簡而言之, RegDerm的治療效果可能是透過調節修復前期的發炎反應來促使傷口癒合。

    Diabetes mellitus (DM) can significantly impair wound healing due to metabolic disturbances. High blood sugar levels cause vascular changes, reducing blood flow and oxygen supply to tissues, which slows down the healing process. The accumulation of advanced glycation end products (AGEs) further disrupts collagen formation and tissue regeneration. Furthermore, diabetes-associated neuropathy may reduce sensation, leading to unnoticed injuries. Poor circulation, immune dysfunction, and delayed cellular repair contribute to prolonged wound healing, making individuals with diabetes more prone to chronic, non-healing wound. In this study, we established the DM pig model by alloxan induction, maintaining at around 200 mg/dL at least one month. Furthermore, we created three wound on pig back which were untreated, treated with different materials, including the competitive product, Integra Dermal, and our Lab material, RegDerm respectively. We evaluated the wound area and wound contraction from measure the appearance, and tissue regeneration in histology. We also study in the changes in macrophage type M1 and M2 during the tissue inflammatory phase. The results showed that the wounds which treated with RegDerm were better than other untreated and Integra Dermal treated group. The RegDerm treatment group's wound area has closed in 14 days after operation. However, we found that regenerated tissue arrangement in RegDerm treatment group were also more similar like normal skin, comparing with other group. In above, the wounds that treated with RegDerm may through regulation of the M1/M2 type during the inflammation. The results indicated that RegDerm not only improving the wound healing but also helping the tissue have better regeneration.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 圖目錄 XI 縮寫表 XIII 一、研究背景 1 1-1 傷口修復過程介紹 1 1-2 高血糖對傷口修復影響 2 1-3 當前治療藥物與臨床需求 3 1-4 發炎期對傷口癒合之重要性 3 1-5 糖尿病高血糖與傷口癒合 6 1-6 膠原蛋白能幫助傷口癒合 7 1-7 真皮彌補物RegDerm與Integra Dermal 8 1-8 研究目的 9 二、材料與方法 11 2-1 膠原蛋白含量測定 11 2-2豬隻飼養與照護 12 2-3 豬隻保定與麻醉 12 2-4 手術前剃毛 13 2-5 實驗藥品與實驗器材儀器 13 2-5-1實驗藥品 13 2-5-2 實驗器材與儀器 14 2-6 高血糖蘭嶼豬建立 15 2-7 傷口開創手術 16 2-8 傷口收縮與癒合率測量 17 2-9 皮膚組織與組織液採集 17 2-10 犧牲後處理 18 2-11組織固定與染色切片 18 2-11-1 H&E (Hematoxylin and Eosin) staining 18 2-11-2 Picro-Sirius Red staining 19 2-11-3 Immunofluorescence staining 19 2-12 實驗分析軟體工具 20 三、結果 21 3-1 RegDerm含高純度膠原蛋白 21 3-2 糖尿病蘭嶼豬傷口建立與治療照護 21 3-2-1糖尿病誘導後的蘭嶼豬 21 3-2-2 蘭嶼豬的治療與術後照護 22 3-3 RegDerm能有效促進傷口癒合 23 3-4 RegDerm治療能促進皮膚組織修復 24 3-5 術後發炎期的傷口外觀變化 27 3-6 RegDerm調控發炎反應促進傷口癒合 28 四、討論 31 4-1 糖尿病蘭嶼豬模式建立 31 4-2 傷口開創手術與治療 32 4-3 RegDerm能幫助組織再生 32 4-4 治療策略-發炎期免疫細胞的調控 33 4-5 結論 36 參考文獻 38 圖表 44

    梁致文。「蘭嶼豬糖尿病模式建立與傷口癒合研究」。碩士論文,國立成功大學生物科技研究所,2017。

    謝名凱。「透明質酸對於發炎細胞基因表現的影響」。碩士論文,國立成功大學生物科技研究所碩博士班,2013。

    Bansal, R., Torres, M., Hunt, M., Wang, N., Chatzopoulou, M., Manchanda, M., Taddeo, E. P., Shu, C., Shirihai, O. S., Bachar-Wikstrom, E., & Wikstrom, J. D. Role of the mitochondrial protein cyclophilin D in skin wound healing and collagen secretion. Journal of clinical investigation insight, 9(9), 2024.

    Beckman, J. A., Creager, M. A., & Libby, P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. Journal of the American Medical Association, 287(19), 2570-2581, 2002.

    Bharti, M. K., Bhat, I. A., Pandey, S., Shabir, U., Peer, B. A., Indu, B., Bhat, A. R., Kumar, G. S., Amarpal, Chandra, V., & Sharma, G. T. Effect of cryopreservation on therapeutic potential of canine bone marrow derived mesenchymal stem cells augmented mesh scaffold for wound healing in guinea pig. Biomedicine & Pharmacotherapy y, 121, 109573, 2020.

    Biswas, S. K., & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology, 11(10), 889-896, 2010.

    Boullion, R. D., Mokelke, E. A., Wamhoff, B. R., Otis, C. R., Wenzel, J., Dixon, J. L., & Sturek, M. Porcine model of diabetic dyslipidemia: insulin and feed algorithms for mimicking diabetes mellitus in humans. Comparative Medicine , 53(1), 42-52, 2003.

    Burgess, J. L., Wyant, W. A., Abdo Abujamra, B., Kirsner, R. S., & Jozic, I. Diabetic Wound-Healing Science. Medicina (Kaunas), 57(10), 2021.

    Chattopadhyay, S., & Raines, R. T. . Review collagen-based biomaterials for wound healing. Biopolymers, 101(8), 821-833, 2014.

    Cissell, D. D., Link, J. M., Hu, J. C., & Athanasiou, K. A. A Modified Hydroxyproline Assay Based on Hydrochloric Acid in Ehrlich's Solution Accurately Measures Tissue Collagen Content. Tissue Engineering, Part C: Methods, 23(4), 243-250, 2017.

    Davison-Kotler, E., Marshall, W. S., & García-Gareta, E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering (Basel), 6(3), 2019.

    Dunn, L., Prosser, H. C., Tan, J. T., Vanags, L. Z., Ng, M. K., & Bursill, C. A. Murine model of wound healing. Journal of Visualized Experiments (75), e50265, 2013.

    Gajbhiye, S., & Wairkar, S.. Collagen fabricated delivery systems for wound healing: A new roadmap. Biomaterials Advances, 142, 213152, 2022.

    Greenhalgh, D. G. Wound healing and diabetes mellitus. Clinics in plastic surgery, 30(1), 37-45, 2003.

    Grohmann, U., Belladonna, M. L., Vacca, C., Bianchi, R., Fallarino, F., Orabona, C., Fioretti, M. C., & Puccetti, P. Positive regulatory role of IL-12 in macrophages and modulation by IFN-gamma. Journal of Immunology 167(1), 221-227, 2001.

    Holzer-Geissler, J. C. J., Schwingenschuh, S., Zacharias, M., Einsiedler, J., Kainz, S., Reisenegger, P., Holecek, C., Hofmann, E., Wolff-Winiski, B., Fahrngruber, H., Birngruber, T., Kamolz, L. P., & Kotzbeck, P. The Impact of Prolonged Inflammation on Wound Healing. Biomedicines, 10(4), 2022.

    Hunt, T. K., Hopf, H., & Hussain, Z. Physiology of wound healing. Advances in Wound Care, 13(2 Suppl), 6-11, 2000.

    Inglik, N., Rudenko, B. A., Kakhnovskiĭ, I. M., & Koroleva, T. V.. [Gas chromatographic study of the composition of the volatile components of the urine in normal subjects and patients with diabetes mellitus]. Laboratornoe Delo(8), 24-27, 1989.

    Jiang, D., Liang, J., & Noble, P. W. . Hyaluronan as an immune regulator in human diseases. Physiological Reviews, 91(1), 221-264, 2011.

    Karppinen, S. M., Heljasvaara, R., Gullberg, D., Tasanen, K., & Pihlajaniemi, T. Toward understanding scarless skin wound healing and pathological scarring. 1000Research, 8, 2019.

    Kim, J. H., Yoon, N. Y., Kim, D. H., Jung, M., Jun, M., Park, H. Y., Chung, C. H., Lee, K., Kim, S., Park, C. S., Liu, K. H., & Choi, E. H. Impaired permeability and antimicrobial barriers in type 2 diabetes skin are linked to increased serum levels of advanced glycation end-product. Experimental Dermatology, 27(8), 815-823, 2018.

    Kolodgie, F. D., Pacheco, E., Yahagi, K., Mori, H., Ladich, E., & Virmani, R. Comparison of Particulate Embolization after Femoral Artery Treatment with IN.PACT Admiral versus Lutonix 035 Paclitaxel-Coated Balloons in Healthy Swine. Journal of Vascular and Interventional Radiology, 27(11), 1676-1685.e1672, 2016.

    Koïtka, A., Abraham, P., Bouhanick, B., Sigaudo-Roussel, D., Demiot, C., & Saumet, J. L. Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes, 53(3), 721-725, 2004.

    Kuo, T. Y., Huang, C. C., Shieh, S. J., Wang, Y. B., Lin, M. J., Wu, M. C., & Huang, L. L. H. Skin wound healing assessment via an optimized wound array model in miniature pigs. Scientific Reports, 12(1), 445, 2022.

    Langrock, T., & Hoffmann, R. Analysis of Hydroxyproline in Collagen Hydrolysates. Methods in Molecular Biology, 2030, 47-56, 2019.

    Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216-226, 2008.

    Liu, W., Yu, M., Xie, D., Wang, L., Ye, C., Zhu, Q., Liu, F., & Yang, L.. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Research & Therapy, 11(1), 259, 2020.

    Ma, X., Nan, F., Liang, H., Shu, P., Fan, X., Song, X., Hou, Y., & Zhang, D. Excessive intake of sugar: An accomplice of inflammation. Frontiers in Immunology, 13, 988481, 2022.

    Mnif, L., Damak, R., Mnif, F., Ouanes, S., Abid, M., Jaoua, A., & Masmoudi, J. Alexithymia impact on type 1 and type 2 diabetes: a case-control study. Ann Endocrinol (Paris), 75(4), 213-219, 2014.

    Monavarian, M., Kader, S., Moeinzadeh, S., & Jabbari, E. Regenerative Scar-Free Skin Wound Healing. Tissue Engineering Part B: Reviews, 25(4), 294-311, 2019.

    Ninan, N., Thomas, S., & Grohens, Y. Wound healing in urology. Advanced drug delivery reviews, 82-83, 93-105, 2015.

    Park, H. Y., Kim, J. H., Jung, M., Chung, C. H., Hasham, R., Park, C. S., & Choi, E. H. A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process. Experimental Dermatology, 20(12), 969-974, 2011.
    Radenković, M., Stojanović, M., & Prostran, M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. Journal of Pharmacological and Toxicological Methods, 78, 13-31, 2016.

    Rais, N., Ved, A., Ahmad, R., Parveen, K., Gautam, G. K., Bari, D. G., Shukla, K. S., Gaur, R., & Singh, A. P. Model of Streptozotocin-nicotinamide Induced Type 2 Diabetes: a Comparative Review. Current Diabetes Reviews, 18(8), e171121198001, 2022.

    Reinke, J. M., & Sorg, H. Wound repair and regeneration. European Surgical Research, 49(1), 35-43, 2012.

    Shomali, N., Mahmoudi, J., Mahmoodpoor, A., Zamiri, R. E., Akbari, M., Xu, H., & Shotorbani, S. S. Harmful effects of high amounts of glucose on the immune system: An updated review. Biotechnology and Applied biochemistry, 68(2), 404-410, 2021.

    Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119, 2022.

    Sunaga, A., Kamochi, H., Sarukawa, S., Uda, H., Sugawara, Y., Asahi, R., Chi, D., Nakagawa, S., Kanayama, K., & Yoshimura, K. Reconstitution of Human Keloids in Mouse Skin. Plastic and Reconstructive Surgery Global Open, 5(4), e1304, 2017.

    Terayama, Y., Kodama, Y., Matsuura, T., & Ozaki, K. Acute alloxan renal toxicity in the rat initially causes degeneration of thick ascending limbs of Henle. Journal of Toxicologic Pathology. 30(1), 7-13, 2017.

    Van Ginderachter, J. A., Movahedi, K., Hassanzadeh Ghassabeh, G., Meerschaut, S., Beschin, A., Raes, G., & De Baetselier, P. Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology, 211(6-8), 487-501, 2006.

    Vasiljević, A., Bursać, B., Djordjevic, A., Milutinović, D. V., Nikolić, M., Matić, G., & Veličković, N. Hepatic inflammation induced by high-fructose diet is associated with altered 11βHSD1 expression in the liver of Wistar rats. European Journal of Nutrition, 53(6), 1393-1402, 2014.

    Velnar, T., Bailey, T., & Smrkolj, V. The wound healing process: an overview of the cellular and molecular mechanisms. Journal of international medical research, 37(5), 1528-1542, 2009.

    Wang, L., Zhang, D., Zhan, W., Zeng, Z., Yin, J., Wang, K., Wang, H., Song, L., Gu, Z., Guo, C., Zhong, Q., Wang, W., Rong, X., Bei, W., & Guo, J. Chinese medicine Fufang Zhenzhu Tiaozhi capsule ameliorates coronary atherosclerosis in diabetes mellitus-related coronary heart disease minipigs. Biomedicine & Pharmacotherapy, 156, 113831, 2022.

    Werner, S., & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiological Reviews, 83(3), 835-870, 2003.

    Wong, V. W., & Crawford, J. D. Vasculogenic cytokines in wound healing. BioMed Research International, 2013, 190486, 2013.

    Yan, C., Chen, J., Wang, C., Yuan, M., Kang, Y., Wu, Z., Li, W., Zhang, G., Machens, H. G., Rinkevich, Y., Chen, Z., Yang, X., & Xu, X. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Delivery, 29(1), 214-228, 2022.

    Zimmerman, D. W. Comparative Power of Student T Test and Mann-Whitney U Test for Unequal Sample Sizes and Variances. The Journal of Experimental Education, 55(3), 171-174, 1987.

    無法下載圖示 校內:2030-02-11公開
    校外:2030-02-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE