| 研究生: |
王勇達 Wang, Yung-Ta |
|---|---|
| 論文名稱: |
應用基因演算法及預測模型於大樓空調系統維護策略最佳化之研究 Using Genetic Algorithms and Prediction Model to Develop the Optimal Maintenance Strategy for HVAC Systems |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 維護策略 、預測模型 、浴缸曲線 、基因演算法 |
| 外文關鍵詞: | Maintenance strategy, Prediction model, Bathtub curve, Genetic Algorithms |
| 相關次數: | 點閱:108 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
建築設備會因營運的時間越長,使設備故障的機率越高,設備可靠度則相對越低,而由於設備的老化是無可避免的,故需要經由維護的作業,使得設備可維持在一定的功能性下,降低設備的老化速率,進而延長設備的更新置換時間,然而,維護的作業則會對應維護費用支出,因此,需建立一套有效益的維護策略模型,在能達到性能要求與預算考量下,降低維護成本的目標。
根據近年文獻指出,空調系統之維護費用在年度總維護預算,佔有相當大的比例,且在實務上維護之進行,通常於設備損壞造成整體空調系統無法正常運作時,才進行報修及後續維護等過程,以此維護方式不僅增加設備維護成本,更降低使用者之舒適度。而在於設備性能的考量上,常常無法被準確衡量,且在性能的劣化速率上,也會依不同的階段,有著相當大的差異。
在此,本研究將目標著重於大樓空調系統設備,利用浴缸曲線(Bathtub curve)之預測模式進行設備性能之評估,並應用基因演算法(Genetic Algorithms, GA)運算,最佳預防性維護作業之時間間隔與最佳維護方式,建立一空調系統維護策略最佳化模式,進而求解出符合最低可接受性能與成本限制之於空調維修最低成本費用,同時利用Visual Basic撰寫電腦程式,輔助使用者求得最佳維護區間與維護方式。
最後,經由模式驗證之結果所示,本研究提出之模式與應用程式,能提供設備管理者,方便達到維護管理的需求,且可由設備性能狀態,得知何時設備會處於較不穩定的狀態,可針對此階段加以監控,使得整體維護效益更能提昇。
Building facilities would get higher failure rate and lower reliability with time in its operation stage. Because it is hard to prevent the deterioration, maintenance is required to keep the function normal and extend the replacement period. However, maintenance can be costly. An efficient maintenance strategy model is therefore useful and will benefit from cost control as well as facilities performance.
According to recent literature, the maintenance cost of HVAC systems has a great amount in the total annual maintenance budget. But on one hand, HVAC systems are often maintained and repaired practically after broken down and wouldn’t function properly. Users and owners would face not only the increasing maintenance costs, but also the decreasing thermal comfort in this way. The other hand, the performance of the HVAC systems is difficult to evaluate while the deterioration rate varies from stages of the systems.
As a result, this research develops the optimal maintenance strategy for HVAC systems by using a prediction model of the bathtub curve to evaluate the performance and using genetic algorithms to optimize the maintenance interval and type. In addition, the research provides a computer program written in Visual Basic for minimizing the maintenance cost with constraints on both performance and cost, and therefore assists users with the information of the best maintenance interval and type.
Finally, as the results of the validation, this research proposes the model and applications for equipment manager to maintenance and management problems. Moreover, the overall facility performance will increase by predicting and monitoring the unstable stages.
英文部分
1.Ascher, H. (2007), “Different insights for improving part and system reliability obtained from exactly same DFOM failure numbers”, Reliability Engineering and System Safety, 92, 552-559.
2.Alghamdi, A. S. and Ben-Daya, M. (2000), “On an imperfect preventive maintenance model”, International Journal of Quality and Reliability Management, Vol. 17, No. 6, 661-670.
3.Bebbington, M., Lai, C. D., Zitikis, R. (2006), “Useful Periods for Lifetime Distributions with Bathtub Shaped Hazard Rate Functions”, IEEE Transactions on Reliability, Vol. 55, No. 2, 245-251.
4.Chu, C.M., Moon, J.F., Lee, H.T., Kim, J.C. (2010), “Extraction of Time-varying Failure Rates on power distribution system equipment considering failure modes and regional effects”, Electrical Power and Energy Systems, 32, 721-727.
5.Chun, Y. H. (1992), “Optimal number of periodic preventive maintenance operations under warranty”, Reliability Engineering and System Safety, 37, 223-225.
6.Dadhich V., Roy, S. (2010), “Availability-Based Optimization of Preventive Maintenance Schedule: A Parametric Study”, Chemical Engineering Transactions, Vol.21, 949-954.
7.Dedopoulos, I. T., Smeers, Y. (1998), “An Age Reduction Approach for Finite Horizon Optimization of Preventive Maintenance for Single Units Subject to Random Failures”, Computers and Industrial Engineering, Vol. 34, No. 3, 643-654.
8.Deloux, E., Castanier, B., Berenguer, C. (2009), “Predictive maintenance policy for a gradually deteriorating system subject to stress”, Reliability Engineering and System Safety, 94, 418-431.
9.Dijoux, Y. (2009), “A virtual age model based on a bathtub shaped initial intensity”, Reliability Engineering and System Safety, 94, 982-989.
10.Garg, A. and Deshmukh, S.G. (2006), “Maintenance management: literature review and directions”, Journal of Quality in Maintenance Engineering, Vol. 12, No. 3, 205-238.
11.Heng, A., Zhang S., Tan Andy, C.C., Mathew J. (2009), “Rotating machinery prognostics: State of the art, challenges and opportunities, Mechanical Systems and Signal Processing, 23, 724-739.
12.Jacob, C. M. Yiu, Wang, S. (2007), “Multiple ARMAX modeling scheme for forecasting air conditioning system performance”, Energy Conversion and Management, 48, 2276-2285.
13.Khan, F. I., Haddara, M. M. (2003), “Risk-based maintenance (RBM): a quantitative approach for maintenance/inspection scheduling and planning”, Journal of Loss Prevention in the Process Industries, 16, 561-573.
14.Kijima, M. and Nakagawa, T. (1992), “Replacement policies of a shock model with imperfect preventive maintenance”, European Journal of Operational Research, Vol. 57, 100-110.
15.Liu, X. G., Makis, V., Jardine, A.K.S. (1995), “A replacement model with overhauls and repairs”, Naval Research Logistics, Vol. 42, 1063-1079.
16.Muralidharan, K. (2002), “Reliability Inferences of Modulated Power-Law Process #i”, IEEE Transactions on Reliability, Vol. 51, No. 1, 23-26.
17.Nguyen, D.G. and Murthy, D.N.P. (1981), “Optimal maintenance policy with imperfect preventive maintenance”, IEEE Transactions on Reliability, Vol. 30, No. 5, 496-497.
18.Nakagawa, T. (1988), “Sequential Imperfect Preventive Maintenance Policies”, IEEE Transactions on Reliability, vol. 37, no. 3, 295-298.
19.Nakagawa, T. (2008), “Advanced Reliability Models and Maintenance Policies”, Spring, Toyota.
20.Olivier Gaudoin, Bo Yang, Min Xie (2006), “Confidence Intervals for the Scale Parameter of the Power-Law Process”, Communications in Statistics-theory and Methods, vol. 35, no. 8, 1525-1538.
21.Park, D. H., Jung G. M., and Yum, J. K. (2000), “Cost Minimization for Periodic Maintenance Policy of a System Subject to Slow Degradation”, Reliability Engineering and System Safety, 68, 105-112.
22.Pham, H. and Wang, H. (1996)., “Imperfect maintenance”, European Journal of Operational Research, 94, 425-438.
23.Pham, H. and Wang, H. (1999)., “Some maintenance models and availability with imperfect maintenance in production systems”, Annals of Operations Research, 91, 305–318.
24.Pulcini, G. (2001), “Modeling the failure data of a repairable equipment with bathtub type failure intensity”, Reliability Engineering and System Safety, 71, 209-218.
25.Pongpech, J., Murthy D.N.P. (2006), “Optimal periodic preventive maintenance policy for leased equipment”, Reliability Engineering and System Safety, 91, 772-777.
26.Pulcini, G. (2009), “Reliability Analysis of Mechanical Systems With Bounded and Bathtub Shaped Intensity Function”, IEEE Transactions on Reliability, Vol. 58, No. 3, 432-443.
27.Rachaniotis, N. P., Pappis, C.P. (2008), “Preventive maintenance and upgrade system: Optimizing the whole performance system by components’ replacement or rearrangement”, International Journal of Production Economics, 112, 236-244.
28.Ro-Yeul Kwaka, Akira Takakusagi, Jang-Yeul Sohn, Shuji Fujii, Byung-Yoon Park (2004), “Development of an optimal preventive maintenance model based on the reliability assessment for air-conditioning facilities in office buildings”, Building and Environment, 39 ,1141-1156.
29.Rakanta, E., Daflou, E., Batis, G. (2007), “Evaluation of corrosion problems in a closed air-conditioning system: a case study”, Desalination, 213, 9-17.
30.Sami El-Ferik (2008), “Economic production lot-sizing for an unreliable machine under imperfect age-based maintenance policy”, European Journal of Operational Research, 186, 150-163.
31.Wang, H. (2002), “A survey of maintenance policies of deteriorating systems”, European Journal of Operational Research, 139, 469-489.
32.Wang C. H., Hwang S. L. (2004), “A stochastic maintenance management model with recovery factor”, Journal of Quality in Maintenance Engineering, Vol. 10, No. 2, 154-164.
33.Wu, S. (2011), “Preventive Maintenance Models: A Review”, Replacement Models with Minimal Repair, 129-140.
中文部分
1.尤建國,(2006),應用基因演算法及馬可夫鏈於建築設備維護策略最佳化之研究,國立成功大學碩士論文。
2.徐世修,(2009),灰色模型在醫院設施維護費用預測之應用, 國立台灣科技大學碩士論文。
3.陳乃瑋,(2003),可修復系統上各種檢定問題之研究,國立中央大學碩士論文。
4.陳明和,(2007),應用基因演算法及模糊理論於建築機電設備維護策略最佳化之研究國立成功大學碩士論文。
5.曹永偉,鄭錦財,空調設備之保養維修與控制,全華科技圖書股份有限公司,台北,1997
6.蔡靜宜,(2008),從物業管理觀點探討既有建築物給排水管路診斷修復,國立雲林科技大學碩士論文。
7.蕭明哲,沈志秋,空調設備(修訂版),全華科技圖書股份有限公司,台北,2005