簡易檢索 / 詳目顯示

研究生: 吳德輝
Wu, Te-Hui
論文名稱: 高速公路移動性施工作業對車流影響之探討
Traffic Impact Analysis for Moving Work Zone Operations on Freeways
指導教授: 胡大瀛
Hu, Ta-Yin
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 146
中文關鍵詞: 高速公路車流影響移動性施工區速限管理交通模擬
外文關鍵詞: freeway, traffic flow impact, moving work zone, speed limit management, traffic simulation
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高速公路的施工和養護工作是維持其服務品質的關鍵措施,但這些工作會導致交通壅塞及延滯。本研究旨在探討高速公路內側車道移動性施工對交通之影響,包括回顧國內外施工區及速限相關文獻、分析移動性施工對車流之影響,並提出施工安排及交通管理改善建議。本研究使用交通模擬軟體SUMO模擬非施工、施工及速限管理策略等情境,先比較非施工及施工情境等12項組合對車流之影響,再從中挑選交通影響較大之情境作為速限管理策略之參考方案,並比較速限間距及速限級距等六項情境組合,再從中挑選改善較佳方案,最後再進行施工車長之敏感度分析。
    研究範圍選自國道1號南向349-356公里主線(岡山至楠梓)共7公里長路段,在施工情境三[施工車速5(公里/小時)及交通量5000(輛)]之情況下,擁有較低的平均速率及較高的平均延滯時間,分別為80.71(公里/小時)及119.82(秒),再以該情境為基準進行速限管理方案之比較,發現在速限管理方案六[速限間距及速限級距分別為600(公尺)及20(公里/小時)]時,相較其他速限管理方案有較佳之效率及安全績效,分別為平均延滯時間72.95(秒)及碰撞時間(TTC)衝突次數3928(次)。此外,以速限管理方案六之施工車長7.1(公尺)為基準,設定施工車長分別為14.2、21.3及28.4(公尺)之方案七、方案八及方案九進行敏感度分析,方案九於平均速率及平均延滯時間分別增加0.40%及減少1.71%;方案八於碰撞時間TTC及避免碰撞減速度DRAC分別增加8.71%及28.75%,顯示當施工車長增加時,對於交通影響亦有所提升。
    本研究旨在提升內側車道移動性施工期間之交通效率及安全性,減少因施工引起之交通問題,提供給相關施工及管理單位參考,並期能為國內高速公路發展做出貢獻。

    Highway construction and maintenance are essential for service quality but often cause congestion and delays. This study investigates the impacts of inner lane moving work zones on freeways, including a review of related literature on work zones and speed limit strategies, an analysis of traffic effects, and recommendations for construction scheduling and traffic management. Using the SUMO simulation platform, non-work-zone, work-zone, and speed-limit control scenarios were modeled. Twelve combinations of work-zone settings were compared, and the scenario with the most significant impact was selected as the baseline for evaluating speed-limit strategies. Six combinations of speed-limit intervals and decrements were tested, and the optimal scheme was identified.
    The study area was a 7(km) segment of National Freeway No. 1 (southbound, 349–356 km, Gangshan to Nanzih). In work-zone scenario 3 [work vehicle speed 5 (km/h); traffic volume 5000(veh/h)], the lowest mean speed and highest delay were observed 80.71(km/h); 119.82(s). Based on this scenario, speed-limit scheme 6 interval 600(m); decrement 20 (km/h) achieved superior efficiency and safety, with reduced mean delay 72.95(s) and fewer TTC conflicts 3928(times). Sensitivity analysis on work vehicle length (7.1、14.2、28.4 m) revealed that longer vehicles further affected traffic: scenario 9 increased mean speed by 0.40% and reduced delay by 1.71%, while scenario 8 raised TTC and DRAC by 8.71% and 28.75%, respectively.
    The findings provide insights for improving efficiency and safety during inner lane moving work zones, offering guidance for highway agencies and contributing to freeway traffic management in Taiwan.

    第一章 緒論 1 1.1研究背景 1 1.2研究動機 1 1.3研究目的 4 1.4研究對象與範圍 5 1.5研究流程 6 第二章 文獻回顧 9 2.1高速公路施工區佈設規範 9 2.1.1美國交通管制標準手冊(MUTCD) 9 2.1.2臺灣交通工程規範 13 2.2施工影響相關研究 17 2.3速限可變標誌 21 2.3.1臺灣高速公路速限可變標誌之應用 22 2.3.2美國高速公路速限可變標誌之應用 23 2.3.3速限可變標誌相關研究 24 2.4交通模擬軟體 30 2.5台灣南區高速公路施工車輛事故統計 31 2.6小結 32 第三章 研究方法 33 3.1研究架構 33 3.2問題描述 34 3.3資料蒐集與整理 36 3.4模擬方法 41 3.4.1非施工情境區模型建構 42 3.4.2施工情境區模型建構 44 3.5績效評估 46 3.5.1效率性指標 46 3.5.2安全性指標 48 3.6模擬情境設計 49 3.6.1施工情境階段 49 3.6.2交通管理策略階段 50 3.7小結 53 第四章 模擬結果與分析 54 4.1實際路網非施工與施工車流情況 54 4.2 虛擬路網模擬績效 58 4.2.1平均速率 59 4.2.2平均延滯時間 60 4.3非施工情境結果 61 4.3.1 非施工情境一(交通量2000輛) 61 4.3.2非施工情境二(交通量3500輛) 62 4.3.3非施工情境三(交通量5000輛) 64 4.4施工情境結果 67 4.4.1施工情境一(施工車速5公里/小時、交通量2000輛) 68 4.4.2施工情境二(施工車速5公里/小時、交通量3500輛) 69 4.4.3施工情境三(施工車速5公里/小時、交通量5000輛) 71 4.4.4施工情境四(施工車速10公里/小時、交通量2000輛) 73 4.4.5施工情境五(施工車速10公里/小時、交通量3500輛) 75 4.4.6施工情境六(施工車速10公里/小時、交通量5000輛) 77 4.4.7施工情境七(施工車速15公里/小時、交通量2000輛) 79 4.4.8施工情境八(施工車速15公里/小時、交通量3500輛) 81 4.4.9施工情境九(施工車速15公里/小時、交通量5000輛) 83 4.5交通管理策略情境結果 85 4.5.1方案一(施工速限間距200公尺、速限調降10公里/小時) 85 4.5.2方案二(施工速限間距400公尺、速限調降10公里/小時) 89 4.5.3方案三(施工速限間距600公尺、速限調降10公里/小時 ) 92 4.5.4方案四(施工速限間距200公尺、速限調降20公里/小時) 95 4.5.5方案五(施工速限間距400公尺、速限調降20公里/小時) 98 4.5.6方案六(施工速限間距600公尺、速限調降20公里/小時) 101 4.5.7績效探討 104 4.6敏感度分析 106 4.7小結 109 第五章 結論與建議 110 5.1研究結論 110 5.2未來建議 111 參考文獻 113 附錄一 訪談紀錄 118 附錄二 施工之交通管制守則修訂情形 119

    中文文獻
    1.蘇珍玉(2017),《施工影響交通之案例研究》(國立高雄第一科技大學,碩士論文)
    2.李光益(2010),《高速公路長期施工路段流量模式構建與應用之實例研究》(國立成功大學,博士論文)。
    3.廖湘綺(2022),《高速公路可預期施工事件對車流影響之模擬分析》(逢甲大學,碩士論文)。
    4.張鈺苹(2022),《高速公路施工之風險管理研析》(國立臺北科技大學,碩士論文)。
    5.周文生、黃昱維(2022),《車輛先進駕駛輔助系統與國道施工車遭撞事故特性初探》。中央警察大學交通學系暨交通管理研究所。
    6.葉妙珊(2014),《應用速限漸變控制策略於高速公路事件管理》(國立成功大學,碩士論文)。
    7. 江宜穎(2013),《高速公路壅塞模擬與主線速率漸變控制模式之研究》(國立臺灣大學,碩士論文)。
    8.溫逸凡(2014),《應用駕駛模擬器探討可變速限標誌於我國之適用性研究》(國立成功大學,碩士論文)。
    9. 盧彥璁(2010),《高速公路速率漸變控制策略之研究》(國立臺灣大學,碩士論文)。
    10. 邱裕鈞、艾嘉銘、林柏辰、黃彥斐、翁佳豪、蔡明峰(2006)《高速公路主線速率動態控制策略之構建與模擬分析》(九十五年道路交通安全與執法研討會)。
    11.國家運輸安全調查委員會(2023),《112年度運輸安全改善建議評估報告》。
    12.國家運輸安全調查委員會(2023),《1121130小客車國道1號大雅路段追撞工程緩撞車事故初步報告》。
    英文文獻
    1.Edara, P., Rahmani, R., Brown, H., & Sun, C. (2017),《Traffic Impact Assessment of Moving Work Zone Operations》. Iowa State University, Institute for Transportation. Federal Highway Administration.
    2.Gan, X., Weng, J., & Zhang, J. (2019),《Evaluation of travel delay and accident risk at moving work zones》. Journal of Transportation Safety & Security.
    3.Fang, S., & Ma, J. (2021),《Influence range and traffic risk analysis of moving work zones on urban roads》. Sustainability, 13(8), 4196.
    4.Saha, T., & Sisiopiku, V. P. (2020),《Assessing work zone traffic control options for 3-to-1 lane closures》. Journal of Transportation Technologies, 10(1), 50-64.
    5.Batson, R. G., Turner, D. S., Ray, P. S., Wang, M., Wang, P., Fincher, R., Lanctot, J., & Cui, Q. (2009),《Work zone lane closure analysis model》. University Transportation Center for Alabama, The University of Alabama, The University of Alabama at Birmingham, and The University of Alabama in Huntsville. ALDOT Report Number 930-721; UTCA Report Number 07404.
    6.Khanta, P. R. (2008),《Evaluation of traffic simulation models for work zones in the New England area》(Master’s thesis, University of Massachusetts Amherst).
    7.Park, B., & Qi, H. (2006),《Microscopic simulation model calibration and validation for freeway work zone network – A case study of VISSIM》.In 2006 IEEE Intelligent Transportation Systems Conference (pp. 1471-1476). IEEE.
    8.Tang, Q., & Hu, X. (2022),《A multi-state merging based analytical model for an operation design domain of autonomous vehicles in work zones on two-lane highways》. Journal of Intelligent Transportation Systems.
    9.Fei, L., Zhu, H. B., & Han, X. L. (2016),《Analysis of traffic congestion induced by the work zone》.Physica A: Statistical Mechanics and its Applications, 450, 497-505.
    10.Brusselaers, N., Fredriksson, A., Gundlegård, D., & Zernis, R. (2024),《Decision support for improved construction traffic management and planning》.Sustainable Cities and Society, 104, 105305.
    11.Li, S., Smirnova, M. N., Yang, S., Smirnov, N. N., & Zhu, Z. (2023),《Exploring the effects of work zone on vehicular flow on ring freeways with a tunnel using a three-lane continuum model》. International Journal of Transportation Science and Technology.
    12.Sze, N. N., & Song, Z. (2019),《 Factors contributing to injury severity in work zone related crashes in New Zealand》. International Journal of Sustainable Transportation, 13(2), 148-154.
    13.Zhang, Z., Akinci, B., & Qian, S. (2023),《 How effective is reducing traffic speed for safer work zones? 》Methodology and a case study in Pennsylvania. Accident Analysis & Prevention, 183, 106966.
    14.Chen, P., Ni, H., Wang, L., Yu, G., & Sun, J. (2024),《Safety performance evaluation of freeway merging areas under autonomous vehicles environment using a co-simulation platform》. Accident Analysis and Prevention, 199, 107530.
    15.Hou, G., & Chen, S. (2020),《S Study of work zone traffic safety under adverse driving conditions with a microscopic traffic simulation approach》.Accident Analysis and Prevention, 145, 105698.
    16. Guido, G., Astarita, V., Giofré, V., & Vitale, A. (2011). Safety performance measures: A comparison between microsimulation and observational data. Procedia - Social and Behavioral Sciences, 20, 217–225.
    17. STEF SMULDERS(1990),CONTROL OF FREEWAY TRAFFIC FLOW BY VARIABLE SPEED SIGNS(Ministry of Transportation and Public Works, Traffic Engineering Divisiont)
    18. LIN, P. W., KANG, K. P., & CHANG, G. L. (2004). Exploring the Effectiveness of Variable Speed Limit Controls on Highway Work-Zone Operations. Journal of Intelligent Transportation Systems, 8(3), 155–168. https://doi.org/10.1080/15472450490492851
    19. Yasir Ali, Mark P.H. Raadsen, Michiel C.J. Bliemer (2024).Effects of passing rates on driving behaviour in variable speed limit-controlled highways: Evidence of external pressure from a driving simulator study,Transportation Research Part F: Traffic Psychology and Behaviour,Volume 104,2024,Pages 488-505,ISSN 1369-8478.https://doi.org/10.1016/j.trf.2024.06.022.
    網站文獻
    1. 交通部高速公路局交通資料庫,https://tisvcloud.freeway.gov.tw/
    2.施工之交通管制守則,https://www.freeway.gov.tw/Publish.aspx?cnid=1502&p=1160
    3. 中華民國交通部全球資訊網-交通工程規範,https://www.motc.gov.tw/ch/app/divpubreg_list/view?module=divpubreg&id=740&serno=434
    4.國家運輸安全調查委員會全球資訊網,https://www.ttsb.gov.tw/
    5.SUMO,https://SUMO.dlr.de/docs/index.html
    6.中華民國交通部全球資訊網-公路路線設計規範, https://www.motc.gov.tw/ch/app/divpubreg_list/view?module=divpubreg&id=740&serno=440
    7. 中華民國交通部全球資訊網-公路養護規範,https://www.motc.gov.tw/ch/app/divpubreg_list/view?module=divpubreg&id=740&serno=423
    8. 交通部高速公路局112年國道安全駕駛手冊,https://www.freeway.gov.tw/Upload/Html/2023814301/

    無法下載圖示 校內:2030-07-22公開
    校外:2030-07-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE