簡易檢索 / 詳目顯示

研究生: 許又壬
Hsu, Yu-Jen
論文名稱: Facebook數位足跡為基之消費者購買決策型態預測方法發展
Development of a Consumer Decision-Making Style Prediction Method based on Digital Footprint Mining in Facebook
指導教授: 陳裕民
Chen, Yuh-Min
共同指導教授: 陳育仁
Chen, Yuh-Jen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 50
中文關鍵詞: 消費者購買決策型態Facebook數位足跡資料探勘機器學習
外文關鍵詞: Consumers’ Decision‐making Styles, Facebook, Digital Footprint, Data Mining
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今企業競爭激烈的環境中,企業除了掌握技術研發、生產製造以及財務管理等能力之外,行銷策略擬定之能力已成為企業成敗的重要關鍵因素;而行銷策略之核心在於企業是否瞭解消費者之購買決策型態。過去企業為了瞭解消費者購買決策型態往往透過費時費力的大量問卷施測以及統計分析;但隨著網際網路發達與社群媒體的普及,越來越多客群會在網路社群媒體上留下互動行為、文字等資料(i.e., Digital Footprint),這也意味著企業有著另一種不同的管道可以更客觀地暸解消費者購買決策型態。因此,如何有效地協助企業從網路社群媒體上客群所遺留下的大量數位足跡(Digital Footprint)中分析出有價值的行銷策略擬定資訊實為現今企業提昇市場競爭優勢的重要研究課題。
    本研究目的在於發展一探勘Facebook使用者之數位足跡以預測消費者購買決策型態之方法,以協助企業快速且正確地掌握消費者的購買決策型態,進而降低行銷成本與提升顧客滿意度。針對上述目的,本研究主要研究項目包括: (i)Facebook數位足跡之消費者購買決策型態預測流程設計,(ii)Facebook數位足跡之消費者購買決策型態預測方法發展以及(iii)系統實作與驗證。

    In today's competitive business environment, The core of the marketing strategy is to understand the consumer profile. In the past, companies have to use the time-consuming questionnaires and statistical analysis in order to understand the consumer profile;But with the development of internet and social media, more and more consumer will leave interaction record, text and other data (ie, Digital Footprint) at the social media website, This also means that companies have a different way to understand the consumer profile more objectively. Thus, how to extract nd analyze the valuable information from the large digital footprints at Internet community media groups for assisting enterprises to develop marketing strategies to enhance the competitive advantage, is an important research topic.
    This study develops a method for predicting consumers’ decision‐making styles by mining digital footprints in Facebook to help enterprises quickly and accurately grasp the consumer's decision-making style, thereby reducing marketing costs and improve customer satisfaction. In accordance with the above purposes, the main research tasks include: (i) designing a process of predicting consumers’ decision‐making styles by mining digital footprints in Facebook, (ii) developing the techniques involved in the designed process, and (iii) implementing a mechanism for predicting consumers’ decision‐making styles by mining digital footprints in Facebook.

    摘要 I Abstract II 致謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 第一章緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 研究目的 2 1.4 研究問題分析 2 1.5 研究項目與方法 4 1.6 研究發展程序 5 第二章文獻探討 6 2.1 研究領域探討 6 2.2 相關技術探討 10 第三章Facebook數位足跡之消費者購買決策型態預測流程設計 13 3.1 Facebook使用者之購買決策型態分析 13 3.2 Facebook數位足跡主題萃取 14 3.3 主題權重計算 15 3.4 消費者購買決策型態預測 15 第四章Facebook數位足跡之消費者購買決策型態方法發展 16 4.1 消費者購買決策型態分析 16 4.2 數位足跡之主題萃取 21 4.3 主題權重計算 31 4.4 消費者購買決策型態預測 33 第五章方法實作與驗證 35 5.1 實作環境 35 5.2 實作結果 36 5.3 實驗結果 41 第六章結論與未來展望 44 6.1 研究成果與貢獻 44 6.2 研究限制 45 6.3 未來研究方向 45 參考文獻 47

    1. Adali, Sibel; Golbeck, Jennifer. Predicting personality with social behavior. In: Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012). IEEE Computer Society, 2012. pp. 302-309.
    2. Babin, Barry J.; Darden, William R.; Griffin, Mitch. Work and/or fun: measuring hedonic and utilitarian shopping value. Journal of consumer research, 1994, pp. 644-656
    3. Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P. and Stillwell, D., Personality and patterns of Facebook usage, In Proceedings of the 4th Annual ACM Web Science Conference, 2012, pp. 24-32
    4. Back, Mitja D., et al. Facebook profiles reflect actual personality, not self-idealization. Psychological science, 2010
    5. Bakewell, Cathy, and Vincent-Wayne Mitchell. "Generation Y female consumer decision-making styles." International Journal of Retail & Distribution Management , 2003,pp. 95-106.
    6. Batra, Satish K., S. H. H. Kazmi, and Satish K. Batra. Consumer Behaviour-2nd. Excel Books India, pp.375 2009.
    7. Bettman, James R. Perceived risk and its components: A model and empirical test. Journal of marketing research, 1973, pp. 184-190.
    8. Blei, David M.; NG, Andrew Y.; Jordan, Michael I. Latent dirichlet allocation. The Journal of machine Learning research, , 2003, pp. 993-1022
    9. Darling, William M. A theoretical and practical implementation tutorial on topic modeling and gibbs sampling. In: Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies, 2011, pp. 642-647
    10. Druckman, James N. "The implications of framing effects for citizen competence." Political Behavior , 2001, pp. 225-256.
    11. Engel, J. F., Kollat, D. T., & Roger, D. (1973). Blackwell, consumer behavior. New York: Holt, Rinehart, and Winston.
    12. Hafstrom, Jeanne L.; Chae, Jung Sook; Chung, Young Sook. Consumer decision‐making styles: comparison between United States and Korean young consumers. Journal of Consumer Affairs, 1992, pp. 146-158.
    13. Hoerl, Arthur E., and Robert W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems." Technometrics ,1970, pp. 55-67.
    14. Horner, Susan, and John Swarbrooke. Consumer behaviour in tourism. Routledge, 2016
    15. Jin, X., Wang, C., Luo, J., Yu, X. and Han, J., LikeMiner: a system for mining the power of 'like' in social media networks, In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011, pp. 753-756
    16. Kosinski, M., Stillwell, D. and Graepel, T., Private traits and attributes are predictable from digital records of human behavior, Proceedings of the National Academy of Sciences, Vol. 110, No. 15, 2013, pp. 5802-5805
    17. K Kotler, Philip.; Kevin Lane Keller (2006). Marketing Management, 12th ed. Pearson Prentice Hall. ISBN 0-13-145757-8.
    18. Lai Albert Wenben. Consumer values, product benefits and customer value: a consumption behavior approach. NA-Advances in Consumer Research Volume 22, 1995.
    19. Lee, Eunsun; AHhn, Jungsun; Kim, Yeo Jung. Personality traits and self-presentation at Facebook. Personality and Individual Differences, 2014, pp. 162-167.
    20. Lysonski, Steven, Srini Durvasula, and Yiorgos Zotos. "Consumer decision-making styles: a multi-country investigation." European journal of Marketing , 1996, pp.10-21
    21. Middleton, V.T.C. and Clarke, J. Marketing for Travel and Tourism, 3rd edn. Butterworth-Heinemann, Oxford., 2001
    22. Moore, Kelly; Mcelroy James C. The influence of personality on Facebook usage, wall postings, and regret. Computers in Human Behavior, 2012, pp. 267-274.
    23. Nadkarni A. and Hofmann G. H., Why do people use Facebook? Personality and Individual Differences Volume 52, Issue 3, 2012, pp. 243–249
    24. Ortigosa, A., Carro, R. M. and Quiroga, J. I., Predicting user personality by mining social interactions in Facebook, Journal of Computer and System Sciences, Vol. 80, No. 1, 2014, pp. 57-71
    25. Salton, G. and McGill, M. J. 1983 Introduction to modern information retrieval. McGraw-Hill, ISBN 0-07-054484-0.
    26. Salton, G., Fox, E. A. and Wu, H. 1983 Extended Boolean information retrieval. Commun. ACM 26, 1022–1036.
    27. Salton, Gerard; Buckley, Christopher. Term-weighting approaches in automatic text retrieval. Information processing & management, 1988, pp. 513-523.
    28. Seidman, Gwendolyn. Self-presentation and belonging on Facebook: How personality influences social media use and motivations. Personality and Individual Differences, 2013, pp. 54.3: 402-407.
    29. Sprotles, George B.; Kendall, Elizabeth L. A methodology for profiling consumers' decision‐making styles. Journal of Consumer Affairs, 1986, pp. 267-279
    30. Tibshirani, Robert. "Regression shrinkage and selection via the lasso." Journal of the Royal Statistical Society. Series B (Methodological) , 1996, pp. 267-288.
    31. Tversky, Amos; Kahneman, Daniel. The framing of decisions and the psychology of choice. In: Environmental Impact Assessment, Technology Assessment, and Risk Analysis. Springer Berlin Heidelberg, 1985. pp. 107-129.
    32. Wikipedia, Facebook., 2016, http://zh.wikipedia.org/wiki/Facebook .
    33. Wikipedia, Latent Dirichlet Allocation, 2016, https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
    34. Wikipedia, Social Media,2016, http://en.wikipedia.org/wiki/Social_media#Distinction_from_other_media
    35. Wikipedia, Topic Model., 2016, https://en.wikipedia.org/wiki/Topic_model
    36. Youyou, W., Kosinski, M. and Stillwell, D., Computer-based personality judgments are more accurate than those made by humans, Proceedings of the National Academy of Sciences, Vol. 112, No, 4, 2015, pp. 1036-1040
    37. Zhao S., Grasmuck S., and Martin J., Identity construction on Facebook: Digital empowerment in anchored relationships. Computers in Human Behavior, 2008, pp. 1816–1836.
    38. 林清河,施坤壽,許家銘,『消費者決策型態與價值觀之研究─臺灣地區大學生之實證研究』, 行政院國家科學委員會研究彙刊:人文及社會科學, 2001,第11(1)卷: pp. 16~29

    39. 傅建為, 以目標客群網路口碑為基之產品理想規格分析技術研發, 2015, pp.1-54
    40. 蔡孟哲, 探勘Facebook互動行為之自動化預測人格類型方法發展, 國立成功大學, 2015, pp. 1-103
    41. 戴孟宗, 蘇姵嘉, 林琬婷, 張凱會, 大學生使用網路購買行為與生活型態之研究, 2008, pp. 26
    42. CKIP中文斷詞系統,http://ckipsvr.iis.sinica.edu.tw/

    無法下載圖示 校內:2021-09-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE