| 研究生: |
葉依婷 Yeh, Yi-Ting |
|---|---|
| 論文名稱: |
研究Eps8參與在v-Src所調控的細胞移動 Participation of Eps8 in v-Src mediated cell motility |
| 指導教授: |
呂增宏
Leu, Tzeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 細胞移動 |
| 外文關鍵詞: | Eps8, v-Src, cell motility |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Eps8(EGF receptor pathway substrate NO.8)是受到EGFR與Src調控的一個受質,具有97KDa及68KDa兩種isoforms。先前實驗室發現v-Src transformed cell (IV5)中,Eps8的表現量及tyrosine phosphorylaton的情形均有增加的現象,而由許多的研究也發現(1)p97Eps8會去結合到integrin β-subunit的cytoplasmic domain;(2)Eps8可能會參與Ras調控Rac的活化這條訊息傳導路徑;(3)此外也證明v-Src會增加細胞的移動力。因此我們想更進一步去研究Eps8在v-Src所調控的細胞移動中扮演什麼角色。首先我們利用siRNA的技術去建立表達不同量Eps8的IV5細胞株。然後以Time-lapse video microscope去分析這些細胞株的細胞移動情形。根據我們所得到的實驗數據發現IV5 細胞中,v-Src可以促進細胞的移動,而這種增加的情形會因為細胞表現會降低p97Eps8與p68Eps8的eps8 siRNA,及專一降低p68Eps8的p68eps8 siRNA而遭到抑制;但若細胞表現只會降低p97Eps8的p97eps8 siRNA則看不到這種現象。進一步分析發現這是因為當細胞內的p97Eps8 與p68Eps8同時降低,會使得FAK tyrosine 576的磷酸化受到抑制,進而造成FAK的結合蛋白paxillin的磷酸化降低。這些實驗結果指出p97Eps8與p68Eps8可能透過改變FAK及paxillin的磷酸化,而共同參與在v-Src所促進的細胞移動訊息路徑中。
Previously, we have observed Eps8 (EGF receptor pathway substrate NO.8) is a common substrate of both EGFR and Src. And proteins with molecular weight of 97 and 68 kDa recognized by Eps8 antibodies have been referred to as the two isforms(p97Eps8 and p68Eps8).Furthermore, both p97Eps8 and p68Eps8 expression is elevated in v-Src transformed cell IV5. Since 1) p97Eps8 may interact with the cytoplasmic domain of integrin β-subunit; 2) it participates in Ras-mediated Rac activation; and 3) v-Src could enhance cell motility, we wonder whether Eps8 may play a role in v-Src-mediated cell migration through interacting with these molecules. To address this issue, we utilize Time-lapse video microscope to analyze cell motility of IV5 cells expressing a variety of eps8 siRNA. Our data indicates that v-Src could increase cell motility of C3H10T1/2 and this enhancement is abrogated when both p97Eps8 and p68Eps8 expression is reduced by eps8 siRNA( specific small interference RNA), p68eps8 specific siRNA but not by p97eps8 specific siRNA. However, both p97Eps8 and p68Eps8 expression are reduced in p68eps8 siRNA overexpressing cells. Thus, p97Eps8 and p68Eps8 may cooperate in v-Src-mediated cell motility. Further studies indicated that phosphorylation of FAK Tyr-576 and paxillin is reduced when both p97Eps8 and p68Eps8 are knockdown. We conclude that both p97Eps8 and p68Eps8 could regulate FAK kinase activity through v-Src-mediated FAK Tyr-576 and paxillin phosphorylation and participate in the regulation of cell movement.
Bellis SL, Miller, JT and Turner, CE. (1995). Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J. Biol. Chem. 270, 17437-17441
Biesova Z, Piccoli C, Wong WT. (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233-241
Bscardi JS, Tice DA and Parsons SJ. (1999). c-Src, receptor tyrosine kinases, and human cancer. Adv. Cancer Res. 76, 61-119
Burridge K, Turner CE and Romer LH. (1992). Tyrosine phosphorylation of paxillin and pp125FAKaccompanies cell adhesion to extracellular matrix: A role in cytoskeletal assembly.J. Cell Biol. 119, 893-903
Calalb MB, Polte TR and Hanks SK. (1995).Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases.Mol. Cell. Biol. 15, 954-963
Calderwood DA, Fujioka Y, de Pereda JM, et al. (2003). Integrin cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling.PNAS 100, 2272-2277
Carragher NO, Westhoff MA, Riley D, Potter DA, FrameMC. (2002). v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates both morphological transformation and cell cycle progression. Mol. Cell Biol. 22, 257-269.
Cary LA, Han DC, Polite TR, Hanks SK and Guan J-L. (1998). Identification of p130cas as a mediator of focal adhesion kinase-promoted cell migration. J. Cell Biol. 140, 211-221
del Pozo MA, Price LS, Alderson NB, Ren XD and Schwartz NA. (2000). Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK.
EMBO J. 19, 2008-2014
Di Fiore PP, Scita G. (2002). Eps8 in the midst of GTPases.
Int. J. Biochem. Cell Biol. 34,1178-1183
Eisenmann KM, McCarthy JB, Simpson MA, Keely PJ, Guan JL, Tachibana K, Lim L, Manser E, Furcht LT, Iida J. (1999). Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol. 1, 507-513.
Eblen ST, Slack JK, Weber MJ and Catling AD. (1999). Rac-PAK signaling stimulates extracellular signal-regulated kinase(ERK) activation by regulating formation of MEK1-ERK complexes.Mol. Cell. Biol. 22, 6023-6033
Erpel T and Courtneidge SA. (1995). Src family protein tyrosine kinases and cellular signal transduction pathways.
Curr. Opin. Cell Biol. 7, 176-182
Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT,et al. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J. 12, 3799-3808
Ferguson KM, Lemmon MA, Schlessinger J and Sigler PB. (1995). Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83, 1037-1046
Fincham VJ, Unlu M, Brunton VG, Pitts JD, Wyke JA, Frame MC. (1996). Translocation of Src kinase to the cell periphery is mediated by the actin cytoskeleton under the control of the Rho family of small G proteins. J. Cell Biol. 135, 1551-1564.
Fincham VJ and Frame MC. (1998). The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO J. 17, 81-92
Gallo R, Provenzano C, Carbone R, Di Fiore PP, Castellani L, Falcone G, et al. (1997). Regulation of the tyrosine kinase substrate Eps8 expression by growth factors, v-Src and terminal differentiation. Oncogene 15, 1929-1936
Harte MT, Hildebrand JD, Burnham MR, Bouton AH and Parsons JT. (1996). p130Cas, a Substrate Associated with v-Src and v-Crk, Localizes to Focal Adhesions and Binds to Focal Adhesion Kinase. J. Biol. Chem. 271, 13649-13655
Hauck CR, Hunter T, Schlaepfer DD. (2001). The v-Src SH3 domain facilitates a cell adhesion-independent association with focal adhesion kinase. J Biol Chem. 276, 17653-62
Innocenti M, Tenca P, Frittoli E, Faretta M, Tocchetti A, Di Fiore PP and Scita G. (2002). Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J Cell Biol. 156,125-136
Innocenti M, Frittoli E, Ponzanelli I, Falck JR, Brachmann SM, Di Fiore PP and Scita G. (2003). Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol. 160 , 17-23.
Jucker M, McKenna K, da Silva AJ, Rudd CE, and Feldman RA. (1997). The Fes Protein-Tyrosine Kinase Phosphorylates a Subset of Macrophage Proteins That Are Involved in Cell Adhesion and Cell-Cell Signaling. J. Biol. Chem. 272, 2104-2109
Karlsson T, Songyang Z, Landgren E, Lavergne C, Di Fiore PP, Anafi M, Pawson T, Cantley LC, Claesson-Welsh L, Welsh M. (1995). Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene 10, 1475-1483
Kira M, Sano S, Takagi S, Yoshikawa K, Takeda J and Itami S. (2002) . STAT3 Deficiency in Keratinocytes Leads to Compromised Cell Migration through Hyperphosphorylation of p130cas.J. Biol. Chem. 277, 12931-12936
Kishan KV, Scita G, Wong WT, Di Fiore PP, Newcomer ME. (1997).The SH3 domain of Eps8 exists as a novel intertwined dimer.Nat Struct Biol. 4, 739-43
Klemke RL, Cai S, Giannini AL, et al. (1997). Regulate of Cell Motility by Mitogen-Activated Protein Kinase. J. Cell Biol. 137, 481-492
Klinghoffer RA, Sachsenmaier C, Cooper JA, Soriano P. (1999). Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459-2471
Konrad RJ, Gold G, Lee TN, Workman R, Broderick CL and Knierman MD. (2003). Glucose Stimulates the Tyrosine Phosphorylation of Crk-associated Substrate in Pancreatic -Cells. J. Biol. Chem. 278, 28116-28122
Kwong L, Wozniak MA, Collins AS, Wilson SD and Keely PJ.
(2003). Ras Promotes Focal Adhesion Formation through Focal Adhesion Kinase and p130 Cas by a Novel Mechanism That Differs from Integrins. Mol. Cell. Biol. 23, 933-949.
Laukaitis CM, Webb DJ, Donais K and Horwitz AF. (2001). Differential dynamics of a5 integrin, paxillin, and a-actinin during formation and disassembly of adhesions in migrating cells.J. Cell Biol. 153, 1427-1440
Maa M-C, Lai J-R, Lin R-W and Leu T-H. (1999). Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochem. Biophys. Acta. 1450, 341-351
Matoskova B, Wong WT, Salcini AE, Pelicci PG, Di Fiore PP. (1995). Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Mol. Cell. Biol. 15, 3805-3812
Matoskova B, Wong WT, Seki N, Nagase T, Nomura N, Robbins KC, Di Fiore PP. (1996). RN-tre identifies a family of tre-related proteins displaying a novel potential protein binding domain. Oncogene 12, 2563-2571
Nakamoto T, Sakai R, Honda H, Ogawa S, Ueno H, Suzuki T, Aizawa S, Yazaki Y, Hirai H. (1997). Requirements for localization of p130cas to focal adhesions. Mol. Cell. Biol. 17, 3884-3897
Ohmori T, Yatomi Y, Inoue K, Satoh K, Ozaki Y. (2000). Tyrosine dephosphorylation, but not phosphorylation, of p130Cas is dependent on integrin alpha IIb beta 3-mediated aggregation in platelets: implication of p130Cas involvement in pathways unrelated to cytoskeletal reorganization. Biochemistry J. 39, 5797-5807
Owen JD, Ruest PJ, Fry DW, Hanks SK. (1999). Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol. Cell. Biol. 19, 4806-4818
Pitcher JA, Touhara K, Payne ES and Lefkowitz RJ. (1995). Pleckstrin homology domain-mediated membrane association and activation of the β-adrenergic receptor kinase requires coordinate interaction with Gβγsubunits and lipid. J Biol Chem , 270, 11707-11710.
Provenzano C, Gallo R, Carbone R, Di Fiore PP, Falcone G, Castellani L, and Alema S. (1998). Eps8, a tyrosine kinase substrate, is recruited to the cell cortex and dynamic F-actin upon cytoskeleton remodeling. Exp Cell Res. 242, 186-200
Polte TR, Hanks SK. (1997). Interaction Between Focal Adhesion Kinase and Crk-Associated Tyrosine Kinase Substrate p130Cas. PNAS 92, 10678-10682
Sabe H, Hamaguchi M, Hanafusa H. (1997). Cell to substratum adhesion is involved in v-Src-induced cellular protein tyrosine phosphorylation: implication for the adhesion-regulated protein tyrosine phosphatase activity. Oncogene 14, 1779-1788
Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR and Parsons JT. (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src.Mol. Cell. Biol. 14, 1680-1688
Schleapfer DD, Hanks SK, Hunter T and ven der Geer P. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786-791
Schlaepfer DD, Broome MA, Hunter T. (1997). Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins.Mol. Cell. Biol. 17, 1702-1713
Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S, Bjarnegard M, Betsholtz C and Di Fiore PP. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401,290-293
Scita G, Tenca P, Areces LB, Tocchetti A, Frittoli E, Giardina G, Ponzanelli I, Sini P, Innocenti M and Di Fiore PP. (2001). An effector region in Eps8 is responsible for the activation of the Rac- specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J Cell Biol. 154,1031-1044
Stehelin D, Varmus HE, Bishop JM, Vogt PK. (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170-173
Touhara K, Inglese J, Pitcher JA, Shaw G and Lefkowitz RJ. (1994). Binding of G protein beta gamma-subunits to pleckstrin homology domains. J. Biol. Chem. 269, 10217-10220
Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS. (1999). Paxillin LD4 Motif Binds PAK and PIX through a Novel 95-kD Ankyrin Repeat, ARF-GAP Protein: A Role in Cytoskeletal Remodeling. J. Cell Biol. 145, 851-863
Vuori K, Hirai H, Aizawa S, Ruoslahti E. (1996). Introduction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases. Mol. Cell. Biol. 16, 2606-2613
Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly.
Nature Cell Biol. 6, 154-161
Wong WT, Carlomagno F, Druck T, Barletta C, Croce CM, Huebner K, et al. (1994). Evolutionary conservation of the EPS8 gene and its mapping to human chromosome 12q23-q24. Oncogene 9, 3057-3061