簡易檢索 / 詳目顯示

研究生: 蔡易澂
Tsai, Yi-Cheng
論文名稱: 二次無理根的連分數
Continued fractions of Quadratic irrational numbers
指導教授: 黃柏嶧
Huang, Po-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 20
中文關鍵詞: 二次無理根佩爾方程連分數
外文關鍵詞: quadratic irrational, Pell’s equation, continued fraction
相關次數: 點閱:155下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用三個定理(Lagrange’s, Galois’, Serret’s),連接二次無理根(quadratic irrational)
    的佩爾方程(Pell’s equation) 之解存在性與連分數(continued fraction) 之長
    度奇偶性之間的關係,進而可用解之存在性判斷連分數之長度奇偶性,或以連分數
    之長度奇偶性判斷佩爾方程解之存在性。

    Using Lagrange’s, Galois’, and Serret’s theorem, connect existence of solutions of
    Pell’s equation with parity of length of the quadratic irrational. Moreover, we can use
    existence of solutions of Pell’s equation to determine parity of the length, or use parity
    of the length to determine existence of Pell’s equation.

    Contents 1 Introduction 1 2 Lagrange’s, Galois’, and Serret’s thorems: 3 3 Matrices in GL2(Z) 6 4 Reduced and palindromic 8 5 Pell’s equation and convergents 13 6 Special irrationals related to some Pell's equations in continued fraction 16 7 Conclusion 19 Reference 20

    [1] Francesca Aicardi : Symmetries of quadratic form classes and of quadratic surd
    continued fractions. Part II: Classification of the periods’ palindromes (2010)
    [2] Sergey Khrushchve : Orthogonal Polynomails and Continued Fractions From Euler’s
    Point of View (2008)
    [3] C. D. Olds : Continued fractions
    [4] Daniel Shanks : Solved and unsolved problems in number thoery (1993)

    下載圖示
    校外:立即公開
    QR CODE