| 研究生: |
王智弘 Wang, Chin-Hung |
|---|---|
| 論文名稱: |
次飛秒脈衝雷射加工系統的開發 Development of Sub-Femtosecond Pulsed Laser Processing System |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 次飛秒脈衝雷射 、聲光調變器 、色散補償 、自相關儀 |
| 外文關鍵詞: | sub-femtosecond pulsed laser, acousto-optic modulator, dispersion compensation, autocorrelator |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文試圖發展出一套次飛秒脈衝雷射加工系統搭配稜鏡對與聲光調變器來進行生物組織影像掃描與加工,由於傳統雷射加工系統(即使是奈秒級),熱效應很嚴重,會有融熔殘渣、微裂縫、精細度差等缺點。而飛秒雷射已可將這些問題做明顯的改善,但一般飛秒雷射的脈衝寬度大都在100 fs左右,這樣的脈衝寬度還是會有熱效應的產生。但是若想要使用脈衝寬度100 fs以下來做加工的話,其色散效應是一個非常嚴重的問題。
研究中使用材料為SF-11的稜鏡對來對整體光路系統進行二階色散的補償,主要補償的元件為聲光調變器與物鏡,補償後之系統脈衝寬度為45 fs,並且利用聲光調變器來當作雷射開關與雷射脈衝選擇器去精確地控制雷射強度的脈衝數量,並對不同大小螢光球和雞腱進行雙光子影像與二倍頻影像掃描,最後也使用不同的脈衝寬度在生物組織上進行加工,我們成功地提高影像之空間解析度以及加工效率,降低熱效應的影響。
In this thesis, we want to develop a sub-femtosecond pulsed laser machining system integrated with prism pair and acousto-optic modulator (AOM) for 3D imaging and processing of bio-tissue. Because of conventional laser machining systems (even at nanosecond pulse) have very serious thermal effect. There are many disadvantages such as melting residues, micro-cracks, and poor fineness etc. They can be significantly improved via using femtosecond laser, but generally speaking, the pulse width of femtosecond laser is about 100 fs, there is still has thermal effect in such pulse width level. Dispersion effect will be very severe issue when machining pulse width is below 100 fs.
The SF-11 prism pair was utilized to compensate overall optical system’s second order dispersion. The major compensation components are AOM and objective. After compensating, the system pulse width is 45 fs, and the AOM was utilized to become laser switch and laser pulse selector for precision control the dose of laser intensity. We get the two-photon image from different sizes of fluorescent beads and second harmonic generation image from chicken tendon. Finally, we also use different pulse width on bio-tissue processing. Improving the image spatial resolution, processing efficiency, and reducing thermal effect have been successfully accomplished.
1. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922-924 (1997).
2. J. Squier and M. Muller, “High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855-2867 (2001).
3. T. M. Ragan, H. Huang, and P. T. So, “In vivo and ex vivo tissue applications of two-photon microscopy,” Methods Enzymol. 361, 481-505 (2003).
4. C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147, 19-30 (2004).
5. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763-767 (1999).
6. M. Goppert-Mayer, “Elementary file with two quantum fissures,” Ann. Phys.-Berlin 9, 273-294 (1931).
7. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
8. P. A. Franken, A. E. Hill, C. E. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119 (1961).
9. I. Freund and M. Deutsch, “Second-harmonic microscopy of biological tissue,” Opt. Lett. 11, 94-96 (1986).
10. G. D. Reid and K. Wynne, Ultrafast Laser Technology and Spectroscopy, Encyclopedia of Analytical Chemistry (2000).
11. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819-821 (2001).
12. U. K. Tirlapur, and K. König, “Femtosecond near-infrared laser pulse induced strand breaks in mammalian cells,” Cell. Mol. Biol. 47, 131-134 (2001).
13. U. K. Tirlapura and K. König, “Cell biology:targeted transfection by femtosecond laser,” Nature 418, 290-291 (2002).
14. N. Shen, Photodisruption in Biological Tissues Using Femtosecond Laser Pulses, Doctoral Dissertation, Harvard University, Cambridge, Massachusetts (2003).
15. W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, “Femtosecond laser disruption of subcellular organelles in a living cell,” Opt. Express 12, 4203-4213 (2004).
16. A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Opt. Express 13, 3690-3696 (2005).
17. W.-L. Chan, Scanning Fiber-Optic Endomicroscopy for Nonlinear Optical Imaging, Institute of Electro-Optical Science and Engineering, National Cheng Kung University (2011).
18. S. Kane and J. Squier, “Grism-pair stretcher–compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification,” J. Opt. Soc. Am. B 14, 661-665 (1997).
19. C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett. 36, 292-294 (2011).
20. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomenon: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, Academic Press (2006).
21. A. Weiner, Ultrafast Optics, John Wiley & Sons (2009).
22. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett. 31, 3363-3365 (2006).
23. P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29, 1414-1415 (1993).
24. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201-203 (1994).
25. Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. Dantus, “Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation,” SPIE 7183, 71830-71836 (2009).
26. http://www.edmundoptics.com
27. https://www.cvimellesgriot.com
28. B. E. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley-Interscience (2007).
29. N. Bloember, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375-386 (1974).
30. C. B. Schaffer, A Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784-1794 (2001).
31. M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications, Springer, Berlin Heidelberg (2003).
32. http://www.kmlabs.com/
33. http://www.ni.com/
34. http://www.madcitylabs.com/
35. J. B. Guild, C. Xu, and W. W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence,” Appl. Opt. 36, 397-401 (1997).
校內:2018-10-28公開