| 研究生: |
莊子萱 Chuang, Zih-Shiuan |
|---|---|
| 論文名稱: |
ML324 抑制登革病毒感染之機制 The antiviral effect of ML324 in dengue virus infection |
| 指導教授: |
余佳益
Yu, Chia-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 登革病毒 、組蛋白去甲基酶抑制劑 |
| 外文關鍵詞: | dengue virus, histone demethylase inhibitor, ML324 |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藥物再利用 (Drug repurposing) 是一種藥物開發的策略,提供已知化學品新的使用途徑,可以增加化學品的應用性並降低研究成本。目前在抗登革病毒藥物的發展中也應用此概念,測試各種已知作用目標的小分子抑制劑,對抗登革病毒感染的可能性。針對組蛋白甲基轉移酶的抑制劑,已被證明可以抑制同為黃質病毒屬的茲卡病毒。在本篇研究中,我們發現一個原先利用在干擾人類泡疹病毒再活化的去甲基酶抑制劑 ML324,可以有效降低登革病毒 RNA 、蛋白的表現以及感染效價,並且無需透過細胞內的作用目標 JMJD2 蛋白,而以新的途徑抑制登革病毒感染。藉由登革病毒持續感染的細胞 N18/D2p 與攜帶登革病毒複製子的細胞株 DV2-SGR 中,我們發現 ML324 不影響病毒 RNA 的複製。透過病毒黏附的試驗,我們發現預先給予細胞 ML324 的處理,在短時間內就能夠有效抑制登革病毒黏附到細胞的能力;對於表面蛋白已由胰蛋白酶處理過的細胞, ML324 抗病毒的效果則明顯下降。因此我們認為 ML324 可能是以細胞表面受器為標的,直接抑制登革病毒感染的抑制劑。儘管目前對於 ML324 的瞭解是調控細胞甲基化修飾的分子,未來或許可以針對 ML324 結構為模板,進一步的修改,提供發展抗登革病毒藥物的新方向。
關鍵字: 登革病毒、組蛋白去甲基酶抑制劑
Drug repurposing is a concept investigating existing chemicals for new therapeutic purposes. Epigenetic modifiers might turn genes on or off that have been repurposed as candidates suppressing DNA and RNA viruses, but little about dengue virus (DENV). Here we treated the DENV-infected human A549 cells with chemicals modulating histone methylation to explore the role of histone methylation in DENV infection. Among the four chemicals we tested, the histone demethylase inhibitor ML324, a suppressor of herpes simplex virus reactivation, could reduce all the levels of DENV RNA, proteins, and titers in a dose-dependent manner. The anti-DENV effect was also observed in cells silencing the expression of ML324 targeting histone demethylase JMJD2, implying that ML324 may inhibit DENV directly. By using N18 cells persistently infected with DENV and cells harboring a DENV replicon DV2-SGR, we found ML324 failed to impair DENV RNA replication. Unexpectedly, we found the pretreatment of ML324 in short time effectively inhibited the DENV binding to the cell surface at 4 °C. The anti-DENV effect of ML324 was diminished in the trypsin-treated cells with most surface protein digested, suggesting that ML324 might inhibit DENV infection by directly targeting cell surface receptors. In conclusion, an unexpected anti-DENV effect of ML324 might suppress DENV infection by interfering with multiple steps of its lifecycle, including binding. Despite ML324 mainly regulating histone methylation in current understanding, the structure of ML324 might provide a reference backbone for anti-DENV agent development.
Keywords: dengue virus, histone demethylase inhibitor, ML324
Alen, M. M. (2011). "Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells." PLoS One6(6): e21658.
Arbuckle, J. H. (2017). "Inhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent Antiviral State and Suppress Infection by Diverse Viral Pathogens." 8(4): e01141-01117
Ashburn, T. T. (2004). "Drug repositioning: identifying and developing new uses for existing drugs." Nat Rev Drug Discov3(8): 673-683.
Basu, A (2008). "Vascular endothelium: the battlefield of dengue viruses." FEMS Immunol Med Microbiol53(3): 287-299.
Berger, S. L. (2009). "An operational definition of epigenetics." Genes Dev23(7): 781-783.
Bernhard, W. (2011). "The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response." FEBS Lett585(22): 3549-3554.
Berry, W. L. (2013). "KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells." Cancer Res73(10): 2936-2942.
Brinton, M. A. (2002). "The molecular biology of West Nile Virus: a new invader of the western hemisphere." Annu Rev Microbiol56: 371-402.
Chang, D. C. (2016). "Evasion of early innate immune response by 2'-O-methylation of dengue genomic RNA." Virology499: 259-266.
Chang, Y. (2009). "Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294." Nat Struct Mol Biol16(3): 312-317.
Chastel, C. (2012). "Eventual role of asymptomatic cases of dengue for the introduction and spread of dengue viruses in non-endemic regions." Front Physiol3: 70.
Cherblanc, F. L. (2013). "Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases." Nat Chem Biol9(3): 136-137.
Choi, J. Y. (2017). "KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels." Sci Rep7: 45005.
Choy, M. M. (2015). "Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection." PLoS Negl Trop Dis9(11): e0004058.
Courageot, M. P. (2000). "Alpha-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum." J Virol74(1): 564-572.
Davis, W. G. (2007). "Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis." J Virol81(18): 10172-10187.
Edgil, D. (2006). "Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited." J Virol80(6): 2976-2986.
Fontaine, K. A. (2015). "Dengue virus induces and requires glycolysis for optimal replication." J Virol89(4): 2358-2366.
Ganesan, M. (2018). "Demethylase JMJD6 as a New Regulator of Interferon Signaling: Effects of HCV and Ethanol Metabolism." Cell Mol Gastroenterol Hepatol5(2): 101-112.
Gomes, A. V. (2016). "Demethylation profile of the TNF-alpha promoter gene is associated with high expression of this cytokine in Dengue virus patients." J Med Virol88(8): 1297-1302.
Halstead, S. B. (1988). "Pathogenesis of dengue: challenges to molecular biology." Science239(4839): 476-481.
Hamel, R. (2015). "Biology of Zika Virus Infection in Human Skin Cells." J Virol89(17): 8880-8896.
Hernandez-Morales, I. (2018). "An Industry Perspective on Dengue Drug Discovery and Development." Adv Exp Med Biol1062: 333-353.
Holloway, A. F. (2007). "Targeting epigenetic modifiers in cancer." Curr Med Chem14(24): 2540-2547.
Horton, J. R. (2016). "Characterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases." J Biol Chem291(6): 2631-2646.
Imai, K. (2010). "Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294." J Biol Chem285(22): 16538-16545.
Isham, C. R. (2007). "Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress." Blood109(6): 2579-2588.
Julander, J. G. (2011). "Important advances in the field of anti-dengue virus research." Antivir Chem Chemother21(3): 105-116.
Kirkpatrick, J. E. (2018). "Inhibition of the histone demethylase KDM4B leads to activation of KDM1A, attenuates bacterial-induced pro-inflammatory cytokine release, and reduces osteoclastogenesis." Epigenetics13(5): 557-572.
Leung, D. (2001). "Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors." J Biol Chem276(49): 45762-45771.
Liang, Y., (2013). "Targeting the JMJD2 histone demethylases to epigenetically control herpesvirus infection and reactivation from latency." Sci Transl Med5(167): 167ra165.
Low, J. G. (2017). "Current Status of Dengue Therapeutics Research and Development." J Infect Dis215(suppl_2): S96-s102.
Marcos-Villar, L. (2018). "Epigenetic control of influenza virus: role of H3K79 methylation in interferon-induced antiviral response." Sci Rep8(1): 1230.
Mathew, A. (2008). "Understanding the contribution of cellular immunity to dengue disease pathogenesis." Immunol Rev225: 300-313.
Modis, Y.(2003). "A ligand-binding pocket in the dengue virus envelope glycoprotein." Proc Natl Acad Sci U S A100(12): 6986-6991.
Modis, Y. (2004). "Structure of the dengue virus envelope protein after membrane fusion." Nature427(6972): 313-319.
Nehme, Z. (2019). "Control of viral infections by epigenetic-targeted therapy." Clin Epigenetics11(1): 55.
Niyomrattanakit, P. (2010). "Inhibition of Dengue Virus Polymerase by Blocking of the RNA Tunnel." 84(11): 5678-5686.
Oh, S. Y. (2015). "The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1alpha Stability and Angiogenesis." Mol Cells38(6): 528-534.
Ono, L. (2003). "In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain)." Antiviral Res60(3): 201-208.
Paschos, K. (2010). "Epigenetic reprogramming of host genes in viral and microbial pathogenesis." Trends Microbiol18(10): 439-447.
Perera-Lecoin, M.(2014). "Flavivirus entry receptors: an update." Viruses6(1): 69-88.
Priyamvada, L. (2017). "Humoral cross-reactivity between Zika and dengue viruses: implications for protection and pathology." Emerg Microbes Infect6(5): e33.
Ptaschinski, C. (2015). "RSV-Induced H3K4 Demethylase KDM5B Leads to Regulation of Dendritic Cell-Derived Innate Cytokines and Exacerbates Pathogenesis In Vivo." PLoS Pathog11(6): e1004978.
Rai, G. (2010). Discovery of ML324, a JMJD2 demethylase inhibitor with demonstrated antiviral activity. Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD), National Center for Biotechnology Information (US).
Singhal, S. (1999). "Antitumor activity of thalidomide in refractory multiple myeloma." N Engl J Med341(21): 1565-1571.
Talarico, L. B. (2005). "The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell." Antiviral Res66(2-3): 103-110.
Tambunan, U. S. (2015). "Screening Analogs of β-OG Pocket Binder as Fusion Inhibitor of Dengue Virus 2." Drug Target Insights9: 33-49.
Tassaneetrithep, B. (2003). "DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells." J Exp Med197(7): 823-829.
Tian, Y. S. (2018). "Dengue Virus and Its Inhibitors: A Brief Review." Chem Pharm Bull (Tokyo)66(3): 191-206.
Tricou, V. (2010). "A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults." PLoS Negl Trop Dis4(8): e785.
Tsukada, Y. (2006). "Histone demethylation by a family of JmjC domain-containing proteins." Nature439(7078): 811-816.
Wang, L. (2013). "A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth." Nat Commun4: 2035.
Wang, P. (2016). "DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein." Virology488: 108-119.
WHO "Dengue." https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
Xu, M. (2018). "SHMT2 and the BRCC36/BRISC deubiquitinase regulate HIV-1 Tat K63-ubiquitylation and destruction by autophagy." PLoS Pathog14(5): e1007071.
Young, L. C. (2013). "The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression." Biochem Cell Biol91(6): 369-377.
Zhang, Y. (2018). "Let-7e inhibits TNF-alpha expression by targeting the methyl transferase EZH2 in DENV2-infected THP-1 cells." J Cell Physiol233(11): 8605-8616.
zur Wiesch, P. A. (2011). "Population biological principles of drug-resistance evolution in infectious diseases." Lancet Infect Dis11(3): 236-247.
張婷惠 (2018). Tubastatin-A及Tubacin抗第二型登革熱病毒能力之研究. 碩士, 中國醫藥大學.