簡易檢索 / 詳目顯示

研究生: 楊善淞
Yang, Shan-Sung
論文名稱: 以EEG探討多元感官刺激結合任務型動作訓練對運動感覺皮層活動的影響
Effects of multisensory stimulation and task-oriented training on the sensorimotor activities: an EEG study.
指導教授: 洪郁修
Hung, Yu-Hsiu
林裕晴
Lin, Yu-Ching
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 102
中文關鍵詞: 多元感官刺激鏡像治療震動刺激任務導向動作訓練腦電圖
外文關鍵詞: multisensory stimulation, mirror therapy, focal vibration stimulation, task-oriented training, EEG
相關次數: 點閱:52下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:鏡像治療、震動刺激與任務導向運動訓練的結合,所形成的多元感官刺激具有皮層活化、運動功能恢復的潛力,而腦波類型也可能和刺激類型對皮層的活化有共同影響。本研究在單手、雙手運動情境下,對任務導向運動訓練(操作積木塊)搭配鏡像治療與震動刺激,並且探討腦波類型,對左右運動感覺皮層的活化效果。
    方法:本研究在單手與雙手運動情境下,進行了兩個二因子受試者內設計,因子分別為刺激類型:無刺激、單元感官刺激(鏡像治療)、多元感官刺激(鏡像治療與震動刺激),與腦波類型(α、β波)。本研究共有六種實驗條件,以觀察單手、雙手運動情境下,無刺激、單元感官刺激、多元感官刺激對左右運動感覺皮層的影響。本研究招募了30位健康右撇子,使用α、β波的運動相關功率同步/不同步(MRPS/MRPD, Motor-related power synchronization /desynchronization)作為左右半球運動感覺皮層活化或抑制程度的評估。
    結果:實驗結果顯示,在單手與雙手運動情境下,刺激類型與腦波類型都對左右半球運動感覺皮層的α、β波MRPS/MRPD有顯著影響。單手運動情境下,多元感官刺激在左側皮層比單元感官刺激與無刺激造成更大的皮層活化,在右側皮層比無刺激有更大的皮層活化。單元感官刺激和無刺激在兩側皮層的活化程度沒有差異。雙手運動情境下,多元感官刺激在兩側皮層比單元感官刺激與無刺激造成更大的皮層活化。單元感官刺激在左側皮層比無刺激有更大的皮層活化。在右側皮層,單元感官刺激與無刺激的皮層活化程度在右側皮層沒有差異。單手、雙手運動情境下,α波的功率降低程度都在兩側皮層大於β波的功率降低程度。
    討論:在單手與雙手運動情境下,使用多元感官刺激都可能會造成兩側運動感覺皮層更有效的活化,可能是更有潛力的運動感覺皮層活化方法,以促進皮層重組與神經可塑性。而單元感官刺激僅在雙手運動情境下的左側皮層比無刺激有更大的皮層活化效果,在使用任務導向運動訓練(操作積木塊)時,有無使用鏡像治療可能對皮層活化的效果影響較小。

    Background: The combination of mirror therapy, vibration stimulation, and task-oriented training creates a multisensory stimulation that has the potential to activate the cortex and aid in the recovery of motor function. The types of brainwaves may also interact with the conditions of sensory stimulation to influence the cortical activation. This study investigated the effects of task-oriented training (blocks manipulating) combined with mirror therapy and vibration stimulation on the cortical activation of sensorimotor cortex in both hemispheres under unilateral and bilateral movement conditions And also investigated the effect of brainwave types.
    Methods: This study employed within-subject designs and two two-way repeated measures ANOVA of unilateral and bilateral movement conditions. One factor was the stimulation conditions (no stimulation, single sensory stimulation, multisensory stimulation). And the other factor was the brainwave types (α wave, β wave). The study involved six experimental conditions to observe the effects of stimulation conditions under unilateral and bilateral movement conditions. A total of 30 healthy right-handed participants were recruited, and the motor-related power synchronization/desynchronization (MRPS/MRPD) of α and β waves in the C3 and C4 electrodes were used to assess the activity of the sensorimotor cortex of the left and right hemispheres.
    Results: The results showed that both the stimulation conditions and brainwave types significantly affected the α and β MRPS/MRPD in the sensorimotor cortex of both hemispheres under unilateral and bilateral movement conditions. Under the unilateral movement condition, multisensory stimulation caused greater cortical activation in the left cortex compared to single sensory stimulation and no stimulation, and greater cortical activation in the right cortex than no stimulation. There was no difference between single sensory stimulation and no stimulation in both hemispheres. Under the bilateral movement condition, multisensory stimulation resulted in greater cortical activation in both hemispheres than single sensory stimulation and no stimulation. The single sensory stimulation resulted in greater cortical activation in the left cortex than no stimulation, but there was no difference between single sensory stimulation and no stimulation in the right cortex. Under unilateral and bilateral movement conditions, the power reduction of α wave was greater than β waves in both hemispheres.
    Discussion: Under unilateral and bilateral movement conditions, the use of multisensory stimulation (mirror therapy and vibration stimulation) may result in more effective activation of the sensorimotor cortex. It might be a more promising method for promoting cortical reorganization and neuroplasticity. Single sensory stimulation only resulted in greater cortical activation in the left cortex under the bilateral movement condition compared to no stimulation. The use of mirror therapy may have a smaller impact on cortical activation when task-oriented training is used.

    摘要 ii SUMMARY iv ACKNOWLEDGEMENTS vi TABLE OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xi CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Motivation 5 1.2.1 Vibration Stimulation Combined with Mirror Therapy has the Potential to Be Used Widely, but Has Rarely Been Investigated 5 1.2.2 Most Multisensory Stimulation Research Focuses on Evaluating its Effects on Motor Function but Has Rarely Explored the Neural Mechanism 7 1.2.3 Differences between α and β waves 8 1.3 Purpose of this Study 11 1.4 Research Questions of this Study 12 1.5 Null Hypothesis of this Study 13 1.6 Contributions of this Study 13 1.7 limitations of this Study 14 CHAPTER 2 Literature review 15 2.1 Brain Imaging technology to Measure the Effects of Rehabilitation Therapy on the Brain 15 2.2 Sensory Stimulation Promotes Recovery of Motor Function 16 2.2.1 Visual Related Stimulation 17 2.2.2 Somatosensory Related Stimulation 18 2.2.3 Conclusions 21 2.3 Parameters of Vibration Stimulation 21 2.3.1 The Amplitude and Frequency of Vibration Stimulation 22 2.3.2 The Duration of Vibration Stimulation 24 2.4 The Movement Types of Mirror Therapy 25 2.5 Parameters of Vibration Stimulation 26 2.6 The Task-Oriental Training of Stroke Rehabilitation 29 CHAPTER 3 METHODS 30 3.1 Method of the Experiment 30 3.2 Participant 30 3.3 Parameters of Vibration Stimulation 31 3.4 Device and Tools 32 3.4.1 Device and Tools of Vibration Stimulation 33 3.4.2 Device and Tools of Mirror Therapy 35 3.4.3 Device and Tools of EEG 36 3.4.4 Devices of task-oriented training 37 3.5 Experiment Design 38 3.6 Procedures 42 3.7 EEG Signal Recording and Processing 47 3.8 Data Analysis 48 CHAPTER 4 RESULTS 49 4.1 Unilateral Movement Condition – Sensorimotor Cortex in Left Hemisphere (C3) 49 4.2 Parameters of Vibration Stimulation 51 4.3 Parameters of Vibration Stimulation 54 4.4 Bilateral Movement Condition – Sensorimotor Cortex in Right Hemisphere (C4) 56 CHAPTER 5 DISCUSSION 59 5.1 Under the Unilateral Movement Condition 60 5.1.1 The Effects of Sensory Stimulation Conditions of the Sensorimotor Cortex Under Unilateral Motor Condition 60 5.1.2 The Effects of Brainwave Types of the Sensorimotor Cortex Under Unilateral Motor Condition 64 5.1.3 Summary of Unilateral Movement Condition 66 5.2 Parameters of Vibration Stimulation 67 5.2.1 The Effects of Sensory Stimulation Conditions of the Sensorimotor Cortex Under Bilateral Motor Condition 68 5.2.2 The Effects of Brainwave Types of the Sensorimotor Cortex Under Bilateral Motor Condition 71 5.2.3 Summary of Bilateral Movement Condition 72 CHAPTER 6 CITATION AND REFERENCE 74 REFERENCES 76

    Annino, G., Alashram, A. R., Alghwiri, A. A., Romagnoli, C., Messina, G., Tancredi, V., Padua, E., & Mercuri, N. B. (2019, Feb). Effect of segmental muscle vibration on upper extremity functional ability poststroke A randomized controlled trial [Article]. Medicine, 98(7), 5, Article e14444. https://doi.org/10.1097/md.0000000000014444

    Arya, K. N., Pandian, S., & Kumar, D. (2017, Apr). Task-based mirror therapy enhances ipsilesional motor functions in stroke: A pilot study. Journal of Bodywork and Movement Therapies, 21(2), 334-341. https://doi.org/10.1016/j.jbmt.2016.08.001

    Arya, K. N., Pandian, S., Kumar, D., & Puri, V. (2015, Aug). Task-Based Mirror Therapy Augmenting Motor Recovery in Poststroke Hemiparesis: A Randomized Controlled Trial. Journal of Stroke & Cerebrovascular Diseases, 24(8), 1738-1748. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.03.026

    Arya, K. N., Pandian, S., Vikas, & Puri, V. (2018, Nov). Mirror Illusion for Sensori-Motor Training in Stroke: A Randomized Controlled Trial. Journal of Stroke & Cerebrovascular Diseases, 27(11), 3236-3246. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.07.012

    Asan, A. S., McIntosh, J. R., & Carmel, J. B. (2022, Jan). Targeting Sensory and Motor Integration for Recovery of Movement After CNS Injury. Frontiers in Neuroscience, 15, Article 791824. https://doi.org/10.3389/fnins.2021.791824

    Bao, S. C., Khan, A., Song, R., & Tong, R. K. Y. (2020, Jan). Rewiring the Lesioned Brain: Electrical Stimulation for Post Stroke Motor Restoration. Journal of Stroke, 22(1), 47-63. https://doi.org/10.5853/jos.2019.03027

    Bartur, G., Pratt, H., Dickstein, R., Frenkel-Toledo, S., Geva, A., & Soroker, N. (2015, May). Electrophysiological manifestations of mirror visual feedback during manual movement. Brain Research, 1606, 113-124. https://doi.org/10.1016/j.brainres.2015.02.029

    Basar, E., Basar-Eroglu, C., Karakas, S., & Schürmann, M. (2000, Mar). Brain oscillations in perception and memory. International Journal of Psychophysiology, 35(2-3), 95-124. https://doi.org/10.1016/s0167-8760(99)00047-1

    Bazanova, O. M., & Vernon, D. (2014, Jul). Interpreting EEG alpha activity. Neuroscience and Biobehavioral Reviews, 44, 94-110. https://doi.org/10.1016/j.neubiorev.2013.05.007

    Bei, Z. F., Zhang, J. Q., Zhang, Z. W., Shu, T., & Niu, W. X. (2019, Mar). Comparison Between Movement-Based and Task-Based Mirror Therapies on Improving Upper Limb Functions in Patients With Stroke: A Pilot Randomized Controlled Trial. Frontiers in Neurology, 10, Article 288. https://doi.org/10.3389/fneur.2019.00288

    Bello, U. M., Winser, S. J., & Chan, C. C. H. (2020, Aug). Role of kinaesthetic motor imagery in mirror-induced visual illusion as intervention in post-stroke rehabilitation. Reviews in the Neurosciences, 31(6), 659-674. https://doi.org/10.1515/revneuro-2019-0106

    Bento, V. F., Cruz, V. T., Ribeiro, D. D., & Cunha, J. P. (2012). The vibratory stimulus as a neurorehabilitation tool for stroke patients: Proof of concept and tolerability test. Neurorehabilitation, 30(4), 287-293. https://doi.org/10.3233/nre-2012-0757

    Binder, C., Kaya, A. E., & Liepert, J. (2009, Jun). VIBRATION PROLONGS THE CORTICAL SILENT PERIOD IN AN ANTAGONISTIC MUSCLE. Muscle & Nerve, 39(6), 776-780. https://doi.org/10.1002/mus.21240

    Bisio, A., Avanzino, L., Gueugneau, N., Pozzo, T., Ruggeri, P., & Bove, M. (2015, Jun). Observing and perceiving: A combined approach to induce plasticity in human motor cortex. Clinical Neurophysiology, 126(6), 1212-1220. https://doi.org/10.1016/j.clinph.2014.08.024

    Blicher, J. U., & Nielsen, J. F. (2009, Feb). Cortical and Spinal Excitability Changes After Robotic Gait Training in Healthy Participants. Neurorehabilitation and Neural Repair, 23(2), 143-149. https://doi.org/10.1177/1545968308317973

    Blickenstorfer, A., Kleiser, R., Keller, T., Keisker, B., Meyer, M., Riener, R., & Kollias, S. (2009, Mar). Cortical and Subcortical Correlates of Functional Electrical Stimulation of Wrist Extensor and Flexor Muscles Revealed by fMRI. Human Brain Mapping, 30(3), 963-975. https://doi.org/10.1002/hbm.20559

    Bolognini, N., Russo, C., & Edwards, D. J. (2016, 2016). The sensory side of post-stroke motor rehabilitation [Article]. Restorative Neurology and Neuroscience, 34(4), 571-586. https://doi.org/10.3233/rnn-150606

    Borges, L., Fernandes, A., Melo, L. P., Guerra, R. O., & Campos, T. F. (2022). Action observation for upper limb rehabilitation after stroke. Cochrane Database of Systematic Reviews(8), Article Cd011887. https://doi.org/10.1002/14651858.CD011887.pub3

    Borich, M. R., Brodie, S. M., Gray, W. A., Ionta, S., & Boyd, L. A. (2015, Dec). Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation. Neuropsychologia, 79, 246-255. https://doi.org/10.1016/j.neuropsychologia.2015.07.007

    Calabro, R. S., Naro, A., Russo, M., Milardi, D., Leo, A., Filoni, S., Trinchera, A., & Bramanti, P. (2017, Oct). Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: A pilot randomized controlled trial. Plos One, 12(10), Article e0185936. https://doi.org/10.1371/journal.pone.0185936

    Carson, R. G., & Buick, A. R. (2021, May). Neuromuscular electrical stimulation-promoted plasticity of the human brain. Journal of Physiology-London, 599(9), 2375-2399. https://doi.org/10.1113/jp278298

    Cassim, F., Szurhaj, W., Sediri, H., Devos, D., Bourriez, J. L., Poirot, I., Derambure, P., Defebvre, L., & Guieu, J. D. (2000, Nov). Brief and sustained movements: differences in event-related (de)synchronization (ERD/ERS) patterns. Clinical Neurophysiology, 111(11), 2032-2039. https://doi.org/10.1016/s1388-2457(00)00455-7

    Celletti, C., Suppa, A., Bianchini, E., Lakin, S., Toscano, M., La Torre, G., Di Piero, V., & Camerota, F. (2020, Jan). Promoting post-stroke recovery through focal or whole body vibration: criticisms and prospects from a narrative review. Neurological Sciences, 41(1), 11-24. https://doi.org/10.1007/s10072-019-04047-3

    Chang, C. S., Lo, Y. Y., Chen, C. L., Lee, H. M., Chiang, W. C., & Li, P. C. (2019, Nov). Alternative Motor Task-Based Pattern Training With a Digital Mirror Therapy System Enhances Sensorimotor Signal Rhythms Post-stroke. Frontiers in Neurology, 10, Article 1227. https://doi.org/10.3389/fneur.2019.01227

    Chen, C. C., Tang, Y. C., Hsu, M. J., Lo, S. K., & Lin, A. H. (2019, Jan). Effects of the hybrid of neuromuscular electrical stimulation and noxious thermal stimulation on upper extremity motor recovery in patients with stroke: a randomized controlled trial. Topics in Stroke Rehabilitation, 26(1), 66-72. https://doi.org/10.1080/10749357.2018.1540458

    Chen, C. J., Lin, J. H., Hsu, J. S., Shih, C. M., Lai, J. J., & Hsu, M. J. (2020, Jan). Influence of Alternate Hot and Cold Thermal Stimulation in Cortical Excitability in Healthy Adults: An fMRI Study. Journal of Clinical Medicine, 9(1), Article 18. https://doi.org/10.3390/jcm9010018

    Chen, J. C., Liang, C. C., & Shaw, F. Z. (2005, Dec). Facilitation of sensory and motor recovery by thermal intervention for the hemiplegic upper limb in acute stroke patients - A single-blind Randomized clinical trial. Stroke, 36(12), 2665-2669. https://doi.org/10.1161/01.STR.0000189992.06654.ab

    Chen , S. C., Hsu, M. J., Kuo, Y. T., Lin, R. T., Lo, S. K., & Lin, J. H. (2020, Feb). Immediate effects of noxious and innocuous thermal stimulation on brain activation in patients with stroke. Medicine, 99(9), Article e19386. https://doi.org/10.1097/md.0000000000019386

    Chen, S. C. J., Lin, J. H., Hsu, J. S., Shih, C. M., Lai, J. J., & Hsu, M. J. (2020, Jan). Influence of Alternate Hot and Cold Thermal Stimulation in Cortical Excitability in Healthy Adults: An fMRI Study. Journal of Clinical Medicine, 9(1), Article 18. https://doi.org/10.3390/jcm9010018

    Chettouf, S., Rueda-Delgado, L. M., de Vries, R., Ritter, P., & Daffertshofer, A. (2020, Jun). Are unimanual movements bilateral? Neuroscience and Biobehavioral Reviews, 113, 39-50. https://doi.org/10.1016/j.neubiorev.2020.03.002

    Chipchase, L. S., Schabrun, S. M., & Hodges, P. W. (2011, Mar). Peripheral electrical stimulation to induce cortical plasticity: A systematic review of stimulus parameters. Clinical Neurophysiology, 122(3), 456-463. https://doi.org/10.1016/j.clinph.2010.07.025

    Choi, W. (2022, Mar). The Effect of Task-Oriented Training on Upper-Limb Function, Visual Perception, and Activities of Daily Living in Acute Stroke Patients: A Pilot Study. International Journal of Environmental Research and Public Health, 19(6), Article 3186. https://doi.org/10.3390/ijerph19063186

    Costantino, C., Galuppo, L., & Romiti, D. (2017, Feb). Short-term effect of local muscle vibration treatment versus sham therapy on upper limb in chronic post-stroke patients: a randomized controlled trial. European Journal of Physical and Rehabilitation Medicine, 53(1), 32-40. https://doi.org/10.23736/s1973-9087.16.04211-8

    Cramer, S. C., Nelles, G., Benson, R. R., Kaplan, J. D., Parker, R. A., Kwong, K. K., Kennedy, D. N., Finklestein, S. P., & Rosen, B. R. (1997, Dec). A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 28(12), 2518-2527. https://doi.org/10.1161/01.Str.28.12.2518

    Crone, N. E., Miglioretti, D. L., Gordon, B., Sieracki, J. M., Wilson, M. T., Uematsu, S., & Lesser, R. P. (1998, Dec). Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis - I. Alpha and beta event-related desynchronization. Brain, 121, 2271-2299. https://doi.org/10.1093/brain/121.12.2271

    de Andrade Melo, S., Iancu, A., Dyer, J.-O., & Forget, R. (2015, 2015/02/18). Effects of Hand Vibration on Motor Output in Chronic Hemiparesis. International Journal of Brain Science, 2015, 804206. https://doi.org/10.1155/2015/804206

    de Kroon, J. R., Ijzerman, M. J., Chae, J., Lankhorst, G. J., & Zilvold, G. (2005, Mar). Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. Journal of Rehabilitation Medicine, 37(2), 65-74. https://doi.org/10.1080/16501970410024190

    Debnath, R., & Franz, E. A. (2016, Aug). Perception of hand movement by mirror reflection evokes brain activation in the motor cortex contralateral to a non-moving hand. Cortex, 81, 118-125. https://doi.org/10.1016/j.cortex.2016.04.015

    Deconinck, F. J. A., Smorenburg, A. R. P., Benham, A., Ledebt, A., Feltham, M. G., & Savelsbergh, G. J. P. (2015, May). Reflections on Mirror Therapy: A Systematic Review of the Effect of Mirror Visual Feedback on the Brain. Neurorehabilitation and Neural Repair, 29(4), 349-361. https://doi.org/10.1177/1545968314546134

    Delorme, A., & Makeig, S. (2004, Mar). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Ding, L., He, J. Y., Yao, L., Zhuang, J. Y., Chen, S. G., Wang, H. W., Jiang, N., & Jia, J. (2020, Oct). Mirror Visual Feedback Combining Vibrotactile Stimulation Promotes Embodiment Perception: An Electroencephalogram (EEG) Pilot Study. Frontiers in Bioengineering and Biotechnology, 8, Article 553270. https://doi.org/10.3389/fbioe.2020.553270

    Duclos, C., Roll, R., Kavounoudias, A., & Roll, J. P. (2007, Jan). Cerebral correlates of the "Kohnstamm phenomenon": An fMRI study. Neuroimage, 34(2), 774-783. https://doi.org/10.1016/j.neuroimage.2006.06.050

    Edwards, L. L., King, E. M., Buetefisch, C. M., & Borich, M. R. (2019, May). Putting the "Sensory" Into Sensorimotor Control: The Role of Sensorimotor Integration in Goal-Directed Hand Movements After Stroke. Frontiers in Integrative Neuroscience, 13, Article 16. https://doi.org/10.3389/fnint.2019.00016

    Ezendam, D., Bongers, R. M., & Jannink, M. J. A. (2009). Systematic review of the effectiveness of mirror therapy in upper extremity function. Disability and Rehabilitation, 31(26), 2135-2149. https://doi.org/10.3109/09638280902887768

    Fong, K. N. K., Ting, K. H., Zhang, J. J. Q., Yau, C. S. F., & Li, L. S. W. (2021, May). Event-Related Desynchronization During Mirror Visual Feedback: A Comparison of Older Adults and People After Stroke. Frontiers in Human Neuroscience, 15, Article 629592. https://doi.org/10.3389/fnhum.2021.629592

    Formaggio, E., Storti, S. F., Galazzo, I. B., Gandolfi, M., Geroin, C., Smania, N., Spezia, L., Waldner, A., Fiaschi, A., & Manganotti, P. (2013, Feb). Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements. Journal of Neuroengineering and Rehabilitation, 10, Article 24. https://doi.org/10.1186/1743-0003-10-24

    Gandhi, D. B. C., Sterba, A., Khatter, H., & Pandian, J. D. (2020). Mirror Therapy in Stroke Rehabilitation: Current Perspectives. Therapeutics and Clinical Risk Management, 16, 75-85. https://doi.org/10.2147/tcrm.S206883

    Goldman, R. I., Stern, J. M., Engel, J., & Cohen, M. S. (2002, Dec). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13(18), 2487-2492. https://doi.org/10.1097/00001756-200212200-00022

    Gross, J. (2019, Oct). Magnetoencephalography in Cognitive Neuroscience: A Primer. Neuron, 104(2), 189-204. https://doi.org/10.1016/j.neuron.2019.07.001

    Guang, H., Ji, L. H., & Shi, Y. Y. (2018, Apr). Focal Vibration Stretches Muscle Fibers by Producing Muscle Waves. Ieee Transactions on Neural Systems and Rehabilitation Engineering, 26(4), 839-846. https://doi.org/10.1109/tnsre.2018.2816953

    Hao, J., Xie, H. Y., Harp, K., Chen, Z., & Siu, K. C. (2022, Mar). Effects of Virtual Reality Intervention on Neural Plasticity in Stroke Rehabilitation: A Systematic Review. Archives of Physical Medicine and Rehabilitation, 103(3), 523-541. https://doi.org/10.1016/j.apmr.2021.06.024

    Holper, L., Biallas, M., & Wolf, M. (2009, Jul). Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: A functional NIRS study. Neuroimage, 46(4), 1105-1113. https://doi.org/10.1016/j.neuroimage.2009.03.027

    Hooker, J. M., & Carson, R. E. (2019). Human Positron Emission Tomography Neuroimaging. In M. L. Yamush (Ed.), Annual Review of Biomedical Engineering, Vol 21 (Vol. 21, pp. 551-581). https://doi.org/10.1146/annurev-bioeng-062117-121056

    Iwane, F., Lisi, G., & Morimoto, J. (2019, Sep). EEG Sensorimotor Correlates of Speed During Forearm Passive Movements. Ieee Transactions on Neural Systems and Rehabilitation Engineering, 27(9), 1667-1675. https://doi.org/10.1109/tnsre.2019.2934231

    Johansson, B. B. (2012, Apr 9). Multisensory stimulation in stroke rehabilitation [Review]. Frontiers in Human Neuroscience, 6, Article 60. https://doi.org/10.3389/fnhum.2012.00060

    Kim, D. H., Lee, K. D., Bulea, T. C., & Park, H. S. (2022, Jan). Increasing motor cortex activation during grasping via novel robotic mirror hand therapy: a pilot fNIRS study. Journal of Neuroengineering and Rehabilitation, 19(1), Article 8. https://doi.org/10.1186/s12984-022-00988-7

    Klimesch, W. (2012, Dec). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617. https://doi.org/10.1016/j.tics.2012.10.007

    Kolbasi, E. N., Huseyinsinoglu, B. E., & Bayraktaroglu, Z. (2022, Aug). Effect of upper limb focal muscle vibration on cortical activity: A systematic review with a focus on primary motor cortex. European Journal of Neuroscience, 56(3), 4141-4153. https://doi.org/10.1111/ejn.15731

    Kossev, A., Siggelkow, S., Kapels, H. H., Dengler, R., & Rollnik, J. D. (2001, Mar). Crossed effects of muscle vibration on motor-evoked potentials. Clinical Neurophysiology, 112(3), 453-456. https://doi.org/10.1016/s1388-2457(01)00473-4

    Lawrence, E. S., Coshall, C., Dundas, R., Stewart, J., Rudd, A. G., Howard, R., & Wolfe, C. D. A. (2001, Jun). Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke, 32(6), 1279-1284. https://doi.org/10.1161/01.Str.32.6.1279

    Le Franc, S., Fleury, M., Jeunet, C., Butet, S., Barillot, C., Bonan, I., Cogne, M., & Lecuyer, A. (2021, Sep). Influence of the visuo-proprioceptive illusion of movement and motor imagery of the wrist on EEG cortical excitability among healthy participants. Plos One, 16(9), Article e0256723. https://doi.org/10.1371/journal.pone.0256723

    Learmonth, G., Benwell, C. S. Y., Thut, G., & Harvey, M. (2017, Jun). Age-related reduction of hemispheric lateralisation for spatial attention: An EEG study. Neuroimage, 153, 139-151. https://doi.org/10.1016/j.neuroimage.2017.03.050

    Lee, H. M., Li, P. C., & Fan, S. C. (2015, Jul). Delayed mirror visual feedback presented using a novel mirror therapy system enhances cortical activation in healthy adults. Journal of Neuroengineering and Rehabilitation, 12, Article 56. https://doi.org/10.1186/s12984-015-0053-1

    Li, W., Li, C., Xiang, Y., Ji, L. H., Hu, H., & Liu, Y. (2019, Nov). Study of the activation in sensorimotor cortex and topological properties of functional brain network following focal vibration on healthy subjects and subacute stroke patients: An EEG study. Brain Research, 1722, Article 146338. https://doi.org/10.1016/j.brainres.2019.146338

    Li, W., Li, C., Xu, Q., & Ji, L. H. (2019). Effects of Focal Vibration over Upper Limb Muscles on the Activation of Sensorimotor Cortex Network: An EEG Study. Journal of Healthcare Engineering, 2019, Article 9167028. https://doi.org/10.1155/2019/9167028

    Li, W., Xu, Q., Li, Y. B., Li, C., Wu, F. F., & Ji, L. H. (2021, Jul). EEG characteristics in "eyes-open" versus "eyes-closed" condition during vibrotactile stimulation. Biomedical Signal Processing and Control, 68, Article 102759. https://doi.org/10.1016/j.bspc.2021.102759

    Liepert, J., & Binder, C. (2010). Vibration-induced effects in stroke patients with spastic hemiparesis - a pilot study [Article]. Restorative Neurology and Neuroscience, 28(6), 729-735. https://doi.org/10.3233/rnn-2010-0541

    Lin, K. C., Huang, P. C., Chen, Y. T., Wu, C. Y., & Huang, W. L. (2014, Feb). Combining Afferent Stimulation and Mirror Therapy for Rehabilitating Motor Function, Motor Control, Ambulation, and Daily Functions After Stroke. Neurorehabilitation and Neural Repair, 28(2), 153-162. https://doi.org/10.1177/1545968313508468

    Lopez, S., Bini, F., Del Percio, C., Marinozzi, F., Celletti, C., Suppa, A., Ferri, R., Staltari, E., Camerota, F., & Babiloni, C. (2017, Jun). Electroencephalographic sensorimotor rhythms are modulated in the acute phase following focal vibration in healthy subjects. Neuroscience, 352, 236-248. https://doi.org/10.1016/j.neuroscience.2017.03.015

    Luengo-Fernandez, R., Violato, M., Candio, P., & Leal, J. (2020, Mar). Economic burden of stroke across Europe: A population-based cost analysis. European Stroke Journal, 5(1), 17-25, Article 2396987319883160. https://doi.org/10.1177/2396987319883160

    Lv, H., Wang, Z., Tong, E., Williams, L. M., Zaharchuk, G., Zeineh, M., Goldstein-Piekarski, A. N., Ball, T. M., Liao, C., & Wintermark, M. (2018, Aug). Resting-state functional MRI: everything that nonexperts have always wanted to know. American Journal of Neuroradiology, 39(8), 1390-1399. https://doi.org/10.3174/ajnr.A5527

    Mancheva, K., Schrader, C., Christova, L., Dengler, R., & Kossev, A. R. (2014, Oct). The effect of muscle vibration on short latency intracortical inhibition in humans. European Journal of Applied Physiology, 114(10), 2073-2080. https://doi.org/10.1007/s00421-014-2930-x

    Mancuso, M., Di Tondo, S., Costantini, E., Damora, A., Sale, P., & Abbruzzese, L. (2021, Mar). Action Observation Therapy for Upper Limb Recovery in Patients with Stroke: A Randomized Controlled Pilot Study. Brain Sciences, 11(3), Article 290. https://doi.org/10.3390/brainsci11030290

    Marconi, B., Filippi, G. M., Koch, G., Giacobbe, V., Pecchioli, C., Versace, V., Camerota, F., Saraceni, V. M., & Caltagirone, C. (2011, Jan). Long-Term Effects on Cortical Excitability and Motor Recovery Induced by Repeated Muscle Vibration in Chronic Stroke Patients. Neurorehabilitation and Neural Repair, 25(1), 48-60. https://doi.org/10.1177/1545968310376757

    Marconi, B., Filippi, G. M., Koch, G., Pecchioli, C., Salerno, S., Don, R., Camerota, F., Saraceni, V. M., & Caltagirone, C. (2008, Dec). Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects. Journal of the Neurological Sciences, 275(1-2), 51-59. https://doi.org/10.1016/j.jns.2008.07.025

    Mathewson, K. J., Hashemi, A., Sheng, B., Sekuler, A. B., Bennett, P. J., & Schmidt, L. A. (2015, Sep). Regional electroencephalogram (EEG) alpha power and asymmetry in older adults: a study of short-term test-retest reliability. Frontiers in Aging Neuroscience, 7, Article 177. https://doi.org/10.3389/fnagi.2015.00177

    Milosevic, M., Marquez-Chin, C., Masani, K., Hirata, M., Nomura, T., Popovic, M. R., & Nakazawa, K. (2020, Nov). Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomedical Engineering Online, 19(1). https://doi.org/10.1186/s12938-020-00824-w

    Moggio, L., de Sire, A., Marotta, N., Demeco, A., & Ammendolia, A. (2022, Sep). Vibration therapy role in neurological diseases rehabilitation: an umbrella review of systematic reviews. Disability and Rehabilitation, 44(20), 5741-5749. https://doi.org/10.1080/09638288.2021.1946175

    Murillo, N., Valls-Sole, J., Vidal, J., Opisso, E., Medina, J., & Kumru, H. (2014, Apr). Focal vibration in neurorehabilitation. European Journal of Physical and Rehabilitation Medicine, 50(2), 231-242. <Go to ISI>://WOS:000339305300015

    Nogueira, N., Parma, J. O., Leao, S., Sales, I. D., Macedo, L. C., Galvao, A., de Oliveira, D. C., Murca, T. M., Fernandes, L. A., Junqueira, C., Lage, G. M., & Ferreira, B. D. (2021, Dec). Mirror therapy in upper limb motor recovery and activities of daily living, and its neural correlates in stroke individuals: A systematic review and meta-analysis. Brain Research Bulletin, 177, 217-238. https://doi.org/10.1016/j.brainresbull.2021.10.003

    Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA.

    Pan, L. H., Yang, W. W., Kao, C. L., Tsai, M. W., Wei, S. H., Fregni, F., Chen, V. C. F., & Chou, L. W. (2018, Jun). Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke. Scientific Reports, 8, Article 9217. https://doi.org/10.1038/s41598-018-27553-4

    Park, J. Y., Chang, M., Kim, K. M., & Kim, H. J. (2015, Jun). The effect of mirror therapy on upper-extremity function and activities of daily living in stroke patients. Journal of Physical Therapy Science, 27(6), 1681-1683. https://doi.org/10.1589/jpts.27.1681

    Parker, V. M., Wade, D. T., & Langton Hewer, R. (1986). Loss of arm function after stroke: measurement, frequency, and recovery. Int Rehabil Med, 8(2), 69-73. https://doi.org/10.3109/03790798609166178

    Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Hochenberger, R., Sogo, H., Kastman, E., & Lindelov, J. K. (2019, Feb). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195-203. https://doi.org/10.3758/s13428-018-01193-y

    Pfurtscheller, G., & da Silva, F. H. L. (1999, Nov). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11), 1842-1857. https://doi.org/10.1016/s1388-2457(99)00141-8

    Pinto, J. O., Dores, A. R., Peixoto, B., Geraldo, A., & Barbosa, F. (2022, Jan). Systematic Review of Sensory Stimulation Programs in the Rehabilitation of Acquired Brain Injury. European Psychologist, 27(1), 20-40. https://doi.org/10.1027/1016-9040/a000421

    Pirovano, I., Mastropietro, A., Antonacci, Y., Bara, C., Guanziroli, E., Molteni, F., Faes, L., & Rizzo, G. (2022, Apr). Resting State EEG Directed Functional Connectivity Unveils Changes in Motor Network Organization in Subacute Stroke Patients After Rehabilitation. Frontiers in Physiology, 13, Article 862207. https://doi.org/10.3389/fphys.2022.862207

    Radovanovic, S., Korotkov, A., Ljubisavljevic, M., Lyskov, E., Thunberg, J., Kataeva, G., Danko, S., Roudas, M., Pakhomov, S., Medvedev, S., & Johansson, H. (2002, Apr). Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Experimental Brain Research, 143(3), 276-285. https://doi.org/10.1007/s00221-001-0994-4

    Rensink, M., Schuurmans, M., Lindeman, E., & Hafsteinsdottir, T. (2009, Apr). Task-oriented training in rehabilitation after stroke: systematic review. Journal of Advanced Nursing, 65(4), 737-754. https://doi.org/10.1111/j.1365-2648.2008.04925.x

    Ritter, P., Moosmann, M., & Villringer, A. (2009, Apr). Rolandic Alpha and Beta EEG Rhythms' Strengths Are Inversely Related to fMRI-BOLD Signal in Primary Somatosensory and Motor Cortex. Human Brain Mapping, 30(4), 1168-1187. https://doi.org/10.1002/hbm.20585

    Rizzo, M., Petrini, L., Del Percio, C., Lopez, S., Arendt-Nielsen, L., & Babiloni, C. (2022, Dec). Mirror visual feedback during unilateral finger movements is related to the desynchronization of cortical electroencephalographic somatomotor alpha rhythms. Psychophysiology, 59(12), Article e14116. https://doi.org/10.1111/psyp.14116

    Rong, J. F., Ding, L., Xiong, L., Zhang, W., Wang, W. I., Deng, M. K., Wang, Y. N., Chen, Z., & Jia, J. (2021, Jul). Mirror Visual Feedback Prior to Robot-Assisted Training Facilitates Rehabilitation After Stroke: A Randomized Controlled Study. Frontiers in Neurology, 12, Article 683703. https://doi.org/10.3389/fneur.2021.683703

    Rosenkranz, K., Pesenti, A., Paulus, W., & Tergau, F. (2003, Mar). Focal reduction of intracortical inhibition in the motor cortex by selective proprioceptive stimulation. Experimental Brain Research, 149(1), 9-16. https://doi.org/10.1007/s00221-002-1330-3

    Rosenkranz, K., & Rothwell, J. C. (2003, Sep). Differential effect of muscle vibration on intracortical inhibitory circuits in humans. Journal of Physiology-London, 551(2), 649-660. https://doi.org/10.1113/jphysiol.2003.043752

    Rosenkranz, K., & Rothwell, J. C. (2006, Feb). Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex. European Journal of Neuroscience, 23(3), 822-829. https://doi.org/10.1111/j.1460-9568.2006.04605.x

    Rossiter, H. E., Borrelli, M. R., Borchert, R. J., Bradbury, D., & Ward, N. S. (2015, Jun). Cortical Mechanisms of Mirror Therapy After Stroke. Neurorehabilitation and Neural Repair, 29(5), 444-452. https://doi.org/10.1177/1545968314554622

    Rowe, V. T., & Neville, M. (2018, Jan). Task Oriented Training and Evaluation at Home. Otjr-Occupation Participation and Health, 38(1), 46-55. https://doi.org/10.1177/1539449217727120

    Sale, P., Ceravolo, M. G., & Franceschini, M. (2014). Action Observation Therapy in the Subacute Phase Promotes Dexterity Recovery in Right-Hemisphere Stroke Patients. Biomed Research International, 2014, Article 457538. https://doi.org/10.1155/2014/457538

    Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005, Oct). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26(2), 148-155. https://doi.org/10.1002/hbm.20150

    Schick, T., Schlake, H. P., Kallusky, J., Hohlfeld, G., Steinmetz, M., Tripp, F., Krakow, K., Pinter, M., & Dohle, C. (2017). Synergy effects of combined multichannel EMG-triggered electrical stimulation and mirror therapy in subacute stroke patients with severe or very severe arm/hand paresis. Restorative Neurology and Neuroscience, 35(3), 319-332. https://doi.org/10.3233/rnn-160710

    Schmidt, R., Ruiz, M. H., Kilavik, B. E., Lundqvist, M., Starr, O. A., & Aron, A. R. (2019, Oct). Beta Oscillations in Working Memory, Executive Control of Movement and Thought, and Sensorimotor Function. Journal of Neuroscience, 39(42), 8231-8238. https://doi.org/10.1523/jneurosci.1163-19.2019

    Schmidt, T. T., Ostvvald, D., & Blankenburg, F. (2014, Sep). Imaging tactile imagery: Changes in brain connectivity support perceptual grounding of mental images in primary sensory cortices. Neuroimage, 98, 216-224. https://doi.org/10.1016/j.neuroimage.2014.05.014

    Schrader, M., Sterr, A., Kettlitz, R., Wohlmeiner, A., Buschfort, R., Dohle, C., & Bamborschke, S. (2022). The effect of mirror therapy can be improved by simultaneous robotic assistance. Restorative Neurology and Neuroscience, 40(3), 185-194. https://doi.org/10.3233/rnn-221263

    Selles, R. W., Michielsen, M. E., Bussmann, J. B. J., Stam, H. J., Hurkmans, H. L., Heijnen, I., de Groot, D., & Ribbers, G. M. (2014, Sep). Effects of a Mirror-Induced Visual Illusion on a Reaching Task in Stroke Patients: Implications for Mirror Therapy Training. Neurorehabilitation and Neural Repair, 28(7), 652-659. https://doi.org/10.1177/1545968314521005

    Serrada, I., Hordacre, B., & Hillier, S. L. (2019, Apr). Does Sensory Retraining Improve Sensation and Sensorimotor Function Following Stroke: A Systematic Review and Meta-Analysis. Frontiers in Neuroscience, 13, Article 402. https://doi.org/10.3389/fnins.2019.00402

    Shamili, A., Mehraban, A. H., Azad, A., Raissi, G. R., & Shati, M. (2022, Sep). Effects of Meaningful Action Observation Therapy on Occupational Performance, Upper Limb Function, and Corticospinal Excitability Poststroke: A Double-Blind Randomized Control Trial. Neural Plasticity, 2022, Article 5284044. https://doi.org/10.1155/2022/5284044

    Siggelkow, S., Kossev, A., Schubert, M., Kappels, H. H., Wolf, W., & Dengler, R. (1999, Nov). Modulation of motor evoked potentials by muscle vibration: The role of vibration frequency. Muscle & Nerve, 22(11), 1544-1548. https://doi.org/10.1002/(sici)1097-4598(199911)22:11<1544::Aid-mus9>3.3.Co;2-#

    Silva, J. D., Lima, F. P. S., de Paula, A. R., Teixeira, S., Bastos, V. H. D., dos Santos, R. P. M., Marques, C. D., Oliveira, M. D. B., de Sousa, F. A. N., & Lima, M. O. (2015, Nov). Assessing vibratory stimulation-induced cortical activity during a motor task-A randomized clinical study [Article]. Neuroscience Letters, 608, 64-70. https://doi.org/10.1016/j.neulet.2015.09.032

    Small, S. L., Buccino, G., & Solodkin, A. (2013, Dec). Brain repair after stroke-a novel neurological model. Nature Reviews Neurology, 9(12), 698-707. https://doi.org/10.1038/nrneurol.2013.222

    Smith, L., & Brouwer, B. (2005, Nov-Dec). Effectiveness of muscle vibration in modulating corticospinal excitability. Journal of Rehabilitation Research and Development, 42(6), 787-793. https://doi.org/10.1682/jrrd.2005.02.0041

    Solopova, I. A., Selionov, V. A., Gareeva, R. R., & Zhvansky, D. S. (2018, 2018/07/01). Influence of Vibration on Motor Responses in the Upper Arm Muscles under Stationary Conditions and during Voluntary and Evoked Arm Movements under Limb Unloading Conditions. Human Physiology, 44(4), 456-465. https://doi.org/10.1134/S0362119718040138

    Spitzer, B., & Haegens, S. (2017, Jul-Aug). Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re)Activation. Eneuro, 4(4). https://doi.org/10.1523/eneuro.0170-17.2017

    Sterba, A., Gandhi, D., Khatter, H., & Pandian, J. (2020, Nov). MIRROR THERAPY IN STROKE REHABILITATION: CURRENT PERSPECTIVES. International Journal of Stroke, 15(1_SUPPL), 645-645. <Go to ISI>://WOS:000587365203173

    Steyvers, M., Levin, O., Verschueren, S. M., & Swinnen, S. P. (2003a, Jul). Frequency-dependent effects of muscle tendon vibration on corticospinal excitability: a TMS study. Exp Brain Res, 151(1), 9-14. https://doi.org/10.1007/s00221-003-1427-3

    Steyvers, M., Levin, O., Verschueren, S. M., & Swinnen, S. P. (2003b, Jul). Frequency-dependent effects of muscle tendon vibration on corticospinal excitability: a TMS study. Experimental Brain Research, 151(1), 9-14. https://doi.org/10.1007/s00221-003-1427-3

    Stinear, C. (2010, Dec). Prediction of recovery of motor function after stroke [Review]. Lancet Neurology, 9(12), 1228-1232. https://doi.org/10.1016/s1474-4422(10)70247-7

    Stolk, A., Brinkman, L., Vansteensel, M. J., Aarnoutse, E., Leijten, F. S. S., Dijkerman, C. H., Knight, R. T., de Lange, F. P., & Toni, I. (2019, Oct). Electrocorticographic dissociation of alpha and beta rhythmic activity in the human sensorimotor system. Elife, 8, Article e48065. https://doi.org/10.7554/eLife.48065

    Sunderland, A., Tinson, D., Bradley, L., & Hewer, R. L. (1989, Nov). ARM FUNCTION AFTER STROKE - AN EVALUATION OF GRIP STRENGTH AS A MEASURE OF RECOVERY AND A PROGNOSTIC INDICATOR. Journal of Neurology Neurosurgery and Psychiatry, 52(11), 1267-1272. https://doi.org/10.1136/jnnp.52.11.1267

    Szurhaj, W., Derambure, P., Labyt, E., Cassim, F., Bourriez, J. L., Isnard, J., Guieu, J. D., & Mauguière, F. (2003, Jan). Basic mechanisms of central rhythms reactivity to preparation and execution of a voluntary movement:: a stereoelectroencephalographic study. Clinical Neurophysiology, 114(1), 107-119, Article Pii s1388-2457(02)00333-4. https://doi.org/10.1016/s1388-2457(02)00333-4

    Tai, I., Lai, C. L., Hsu, M. J., Lin, R. T., Huang, M. H., Lin, C. L., Hsieh, C. L., & Lin, J. H. (2014, Sep). Effect of Thermal Stimulation on Corticomotor Excitability in Patients with Stroke. American Journal of Physical Medicine & Rehabilitation, 93(9), 801-808. https://doi.org/10.1097/phm.0000000000000105

    Tai, R. Y., Zhu, J. D., Chen, C. C., Hsieh, Y. W., & Cheng, C. H. (2021, Oct). Modulation of Functional Connectivity in Response to Mirror Visual Feedback in Stroke Survivors: An MEG Study. Brain Sciences, 11(10), Article 1284. https://doi.org/10.3390/brainsci11101284

    Tai, R. Y., Zhu, J. D., Cheng, C. H., Tseng, Y. J., Chen, C. C., & Hsieh, Y. W. (2020, Oct). Cortical neural activity evoked by bilateral and unilateral mirror therapy after stroke. Clinical Neurophysiology, 131(10), 2333-2340. https://doi.org/10.1016/j.clinph.2020.06.030

    Tashiro, S., Mizuno, K., Kawakami, M., Takahashi, O., Nakamura, T., Suda, M., Haruyama, K., Otaka, Y., Tsuji, T., & Liu, M. G. (2019, Nov). Neuromuscular electrical stimulation-enhanced rehabilitation is associated with not only motor but also somatosensory cortical plasticity in chronic stroke patients: an interventional study. Therapeutic Advances in Chronic Disease, 10, Article 2040622319889259. https://doi.org/10.1177/2040622319889259

    Thieme, H., Morkisch, N., Mehrholz, J., Pohl, M., Behrens, J., Borgetto, B., & Dohle, C. (2018). Mirror therapy for improving motor function after stroke. Cochrane Database of Systematic Reviews(7), Article Cd008449. https://doi.org/10.1002/14651858.CD008449.pub3

    Tinga, A. M., Visser-Meily, J. M. A., van der Smagt, M. J., van der Stigchel, S., van Ee, R., & Nijboer, T. C. W. (2016, Mar). Multisensory Stimulation to Improve Low- and Higher-Level Sensory Deficits after Stroke: A Systematic Review. Neuropsychology Review, 26(1), 73-91. https://doi.org/10.1007/s11065-015-9301-1

    Toscano, M., Celletti, C., Vigano, A., Altarocca, A., Giuliani, G., Jannini, T. B., Mastria, G., Ruggiero, M., Maestrini, I., Vicenzini, E., Altieri, M., Camerota, F., & Di Piero, V. (2019, Feb). Short-Term Effects of Focal Muscle Vibration on Motor Recovery After Acute Stroke: A Pilot Randomized Sham-Controlled Study. Frontiers in Neurology, 10, Article 115. https://doi.org/10.3389/fneur.2019.00115

    Tu-Chan, A. P., Natraj, N., Godlove, J., Abrams, G., & Ganguly, K. (2017, Nov). Effects of somatosensory electrical stimulation on motor function and cortical oscillations. Journal of Neuroengineering and Rehabilitation, 14, Article 113. https://doi.org/10.1186/s12984-017-0323-1

    van Lieshout, E. C. C., van de Port, I. G., Dijkhuizen, R. M., & Visser-Meily, J. M. A. (2020, Oct). Does upper limb strength play a prominent role in health-related quality of life in stroke patients discharged from inpatient rehabilitation? [Article]. Topics in Stroke Rehabilitation, 27(7), 525-533. https://doi.org/10.1080/10749357.2020.1738662

    Veldman, M. P., Maffiuletti, N. A., Hallett, M., Zijdewind, I., & Hortobagyi, T. (2014, Nov). Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neuroscience and Biobehavioral Reviews, 47, 22-35. https://doi.org/10.1016/j.neubiorev.2014.07.013

    Wang, H. W., Chandrashekhar, R., Rippetoe, J., & Ghazi, M. (2020, Nov). Focal Muscle Vibration for Stroke Rehabilitation: A Review of Vibration Parameters and Protocols. Applied Sciences-Basel, 10(22), Article 8270. https://doi.org/10.3390/app10228270

    Wang, H. W., Ghazi, M., Chandrashekhar, R., Rippetoe, J., Duginski, G. A., Lepak, L. V., Milhan, L. R., & James, S. A. (2022, May). User Participatory Design of a Wearable Focal Vibration Device for Home-Based Stroke Rehabilitation. Sensors, 22(9), Article 3308. https://doi.org/10.3390/s22093308

    Wang, Y. X., & Luo, Z. Z. (2022, Jun). Research on the Effect of MT plus FES Training on Sensorimotor Cortex. Neural Plasticity, 2022, Article 6385755. https://doi.org/10.1155/2022/6385755

    Xerri, C., Merzenich, M. M., Peterson, B. E., & Jenkins, W. (1998, Apr). Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. Journal of Neurophysiology, 79(4), 2119-2148. https://doi.org/10.1152/jn.1998.79.4.2119

    Yavuzer, G., Selles, R., Sezer, N., Sutbeyaz, S., Bussmann, J. B., Koseoglu, F., Atay, M. B., & Stam, H. J. (2008, Mar). Mirror therapy improves hand function in subacute stroke: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 89(3), 393-398. https://doi.org/10.1016/j.apmr.2007.08.162

    Zhang, S. S., Wang, D. X., Afzal, N., Zhang, Y. R., & Wu, R. L. (2016, Jul-Sep). Rhythmic Haptic Stimuli Improve Short-Term Attention. Ieee Transactions on Haptics, 9(3), 437-442. https://doi.org/10.1109/toh.2016.2531662

    Zhou, Z. Q., Chen, S. M., Li, Y. L., Zhao, J. J., Li, G. W., Chen, L., Wu, Y. W., Zhang, S. C., Shi, X. L., Chen, X. X., Xu, S. T., Ren, M., Chang, S. X., & Shan, C. L. (2022, Jun). Comparison of Sensory Observation and Somatosensory Stimulation in Mirror Neurons and the Sensorimotor Network: A Task-Based fMRI Study. Frontiers in Neurology, 13, Article 916990. https://doi.org/10.3389/fneur.2022.916990

    Zhu, J. D., Cheng, C. H., Tseng, Y. J., Chou, C. C., Chen, C. C., Hsieh, Y. W., & Liao, Y. H. (2019, Oct). Modulation of Motor Cortical Activities by Action Observation and Execution in Patients with Stroke: An MEG Study. Neural Plasticity, 2019, Article 8481371. https://doi.org/10.1155/2019/8481371

    黃筠倫. (2021). 探索慢性期中風病患日常習慣以開發多感官刺激之手部復健器材. ﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/h9wbb3

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE