| 研究生: |
莊振傑 Jhuang, Jhen-jie |
|---|---|
| 論文名稱: |
高效率串聯有機太陽能電池之開發 Develop of High Efficient Tandem Organic Solar Cells |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 有機 、高分子 、開路電壓 、斷路電流 、填充因子 |
| 外文關鍵詞: | Organic, Polymer, Open Circuit Voltage, Short Circuit Current, Fill Factor |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本文中,藉由兩種不同P-type有機高分子材料,探討其表面型態、開路電壓以及短路電流之間的變化,其中在有機太陽能電池的作動層中,施體材料採用MEH-PPV和P3HT,而受體採用PCBM。以P3HT:PCBM的元件而言,嘗試改變製程順序,發現蒸鍍完鋁電極再回火之元件,其斷路電流可以由8.6(mA/cm2)有效提升至9.3(mA/cm2),填充因子也可從38(%)上升至40(%)。實驗中發現當回火溫度高於有機材料之玻璃轉換溫度時,開路電壓可以由0.42(V)提升至0.58(V),斷路電流則由9.3(mA/cm2)提升至9.86(mA/cm2),使得整體效率由1.58(%)大幅提升至2.32(%),最後藉由嵌入一層低功函數(Ca or LiF)的電極,填充因子由41(%)提升至61(%),整體的光電轉換效率將近於3%。最後,考慮到有機材料本身狹窄吸收波段的特性,將上述兩電池作串聯,希望藉由吸收波段的增加,能將整體效率往上提升。
In this study, we use two kinds of P-type organic polymer materials and research their morphology, open circuit voltage(VOC) and short circuit current(ISC). Active layer is made of MEH-PPV or P3HT as donor and PCBM as an acceptor in organic solar cells. In bulk heterojunction solar cells using P3HT as donor and PCBM as an acceptor, change the procedure for post-production annealed after deposition of the Al electrode can increase short circuit current and fill factor from 8.6(mA/cm2) to 9.3(mA/cm2) and 38(%) to 44(%), respectively. When temperature of annealing above the glass transition temperature of organic materials, lead to increase the open circuit voltage, short circuit current and power conversion efficiency from 0.42(V) to 0.58(V), 9.3(mA/cm2) to 9.86 (mA/cm2) and 1.58(%) to 2.32 (%), respectively. When deposition the low work function metal (ex: Ca or LiF) between the Al electrode and the active layer, the fill factor from 41(%) to 61(%) and power conversion efficiency increase to 3(%). In the end, we considered that narrow absorption spectrum of the organic materials to tandem the two cells of the above. By increase absorption of the solar radiation to improve the power conversion efficiency.
[1] United Nations Environment Programme (UNEP), Global environment outlook (GEO yearbook 2008),web site: www.unep.org/geo/tearbook.
[2] C. J. Brabec, Solar Energy Materials and Solar Cells 2004, 83, 273.
[3] Global Warning Art, http://www.globalwarmingart.com/.
[4] B. A. Gregg, J. Phys. Chem. B 2003, 107, 4688.
[5] C. J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen, and N. S. Sariciftci, Chem. Phys. Lett. 2001, 340, 232.
[6] P. Penumans, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 126.
[7] J. Xue, S. Uchida, B.P. Rand, S.R. Forrest, Appl. Phys. Lett. 2004, 84, 3013.
[8] H. Hoppe, N. S. Sariciftci, Journal of Material Research 2004, 19, 1924.
[9] C. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Advances Functional Materials 2001, 11, 374.
[10] G. E. Jabbour, Y. Kawable, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, N. Peyghambarian, Appl. Phys. Lett. 1997, 71, 1762.
[11] G. M. Lewis, P. M. Smowton, J. D. Thomson, H. D. Summers, P. Blood, Appl. Phys. Lett. 2002, 80, 1.
[12] M. Hiramoto, M. Suezaki, M. Yokoyama, Chem. Lett. 1990, 327.
[13] A. Yakimov, S. R. Forrest, Appl. Phys. Lett. 2002, 80, 1667.
[14] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
[15] J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 2004, 85, 5757.
[16] P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693.
[17] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater. 2005, 17, 66.
[18] P. Peumans, V. Bulovic, S. R. Forrest, Appl. Phys. Lett. 2000, 76, 2650.
[19] G. Dennler, H.-J. Prall, R. Koeppe, M. Egginger, R. Autengruber, N. S. Sariciftci, Appl. Phys. Lett. 2006, 89, 073502.
[20] L. Chen, D. Godovsky, O. Inganäs, J. C. Hummelen, R. A. J. Janssen, M. Svensson, M. R. Andersson, Adv. Mater. 2000, 12, 1367.
[21] V. Shrotriya, E. H. Wu, G. Li, Y. Yao, Y. Yang, Appl. Phys. Lett. 2006, 88, 064104.
[22] M. Lenes, L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 2006, 88, 243502.
[23] K. Kawano, N. Ito, T. Nishimori, J. Sakai, Appl. Phys. Lett. 2006, 88, 073514.
[24] A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. G. R. Turbiez, M. M. Wienk, R. A. J. Janssen, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 1897.
[25] M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen,J. M. Kroon, O. Inganas, M. R. Andersson, Adv. Mater. 2003, 15, 988.
[26] M. M. Wienk, M. G. R. Turbiez, M. P. Struijk, M. Fonrodona, R. A. J. Janssen, Appl. Phys. Lett. 2006, 88, 153511.
[27] A. Hadipour, B. de Boer, P. W. M. Blom, J. Appl. Phys. 2007, 102, 074506.
[28] J. Gilot, M. M. Wienk, R. A. J. Janssen, Appl. Phys. Lett. 2007, 90, 143512.
[29] W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, J. Phys. Chem. B 2005, 109, 9505.
[30] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. (Weinheim, Ger.) 2006, 18, 572.
[31] F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, Appl. Phys. Lett. 2006, 89, 102103.
[32] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222.
[33] M. W. Wanlass et al., Sol. Cells 1989, 27, 191.
[34] D. Mühlbacher et al., Adv. Mater. 2006, 18, 2884.
[35] J. Birgerson, M. Fahlman, P. Broms, W. R. Salaneck, Synth. Met. 1996, 80, 125.
[36] M. Logdlund, J. L. Bredas, J. Chem. Phys. 1994, 101, 4357.
[37] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[38] S. Sirringhaus, N. Tessler, R. H. Friend, Science 1998, 280, 1741.
[39] Q. Shi, Y. Hou, J. Lu, H. Jin, Y. Li, Y. Li, X. Sun, J. Liu, Chem. Phys. Lett. 2006, 425, 353.