| 研究生: |
哈立德 Shukur, Anmar Khalid |
|---|---|
| 論文名稱: |
多晶矽錠定向凝固過程中濃度分佈之數值模擬 The Numerical Simulation of Carbon Concentration Distribution during Directional Solidification of Polycrystalline Silicon Ingot |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 多晶 、矽晶錠 、定向凝固 、熱交換爐 、數值模擬 、有限差分法 |
| 外文關鍵詞: | polycrystalline, ingot casting, directional solidification, HEM furnace, numerical simulation, finite difference method (FDM) |
| 相關次數: | 點閱:84 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高轉換效率的太陽能電池是其中一種潛在性的永續能源,多數的太陽能電池由結晶矽太陽(單晶矽或多晶矽)所製造。因為單晶矽太陽能電池由矽最高等級所製造而成,單晶矽太陽能電池具有最高的轉換效率;而多晶矽太陽能電池由於從便宜的原料所生產,則它們則有較多的優選方位。定向凝固是一種可考慮為最佳的方式,生產較大的尺寸與較高品質的矽晶錠,由於它們在原料中的雜質有較大耐受性。
熱交換法是最好的鑄造方法,因為它具有簡單操作、成本低廉與原料送進機器內的機動性等優點。在定向凝固的熱交換系統中,溫度分佈是由爐內條件、加熱器功率與冷卻系統所影響。冷卻條件、加熱區的設計與雜質的偏析從鑄造過程中,藉由熱交換法會有意義的影響多晶矽鑄錠的品質。固、液界面的型狀在成長矽晶錠的定向凝固過程中,具有重要的雜質偏析影響。
固液界面的形狀和位置是受到加熱器的功率與坩鍋壁的熱性質影響。在這個研究中,使用一個二維數值模擬的有限差分法,研究多晶矽鑄錠在凝固過程中溫度的變化/分佈,結果與實驗量測結果進行比較。藉由調整加熱功率與不同固、液界面側壁的熱性質進行模擬。熱模擬結果顯示,使用有限差分法所建立的程式碼,在凝固過程中能夠計算碳濃度的分佈。碳濃度的分佈已經能夠研究三種鑄錠不同界面形狀的成長。
關鍵字:多晶,矽晶錠,定向凝固,熱交換爐,數值模擬,有限差分法。
High efficiency solar cells are one of the renewable energy potential. The majority of solar cells are made by crystalline silicon (either mono or poly crystalline). Although mono-crystalline cells have the highest efficiency since they are made by the highest grade of silicon, the poly-crystalline are more preferable since they are made by cheaper raw materials. Directional solidification is considered the best way to produce large scale and high quality ingot. Since it has a great tolerance to the impurities in the feedstock.
The heat exchange method is the best casting method since it has the advantages of an easy operation, low cost and flexibility of the materials in the feedstock. During directional solidification in the (HEM) system the temperature distribution is affected by the condition of the furnace and the power of the heaters and cooling system in the furnace. The cooling condition and the design of the hot zone and the impurities segregation have a significant effect on the quality of polycrystalline silicon ingot from casting process by heat exchange method (HEM). The shape of solid-liquid interface has a great impact on the impurity segregation in the grown ingot during directional solidification.
The solid-liquid interface shape and position are effected by the power of the heaters and the thermal property of the crucible walls. In this study a 2D numerical simulation using FE method has been performed to investigate the temperature variation/distribution in the solidification process of polycrystalline silicon ingot and the results are compared to the experimental measurements. By adjusting the power of the heaters and thermal properties of the side walls different solid-liquid interface has been simulated. The result from the thermal simulation has been incorporated to establish a code using finite difference method (FDM) to calculate the carbon concentration distribution during the solidification process. The distribution of the carbon has been investigated for three ingots grown with different interface shapes.
1. Powell, D.M., Winkler, M.T., Choi, H.J., Simmons, C.B., Needleman, D.B. and Buonassisi, T., 2012. Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy & environmental science, 5(3), pp.5874-5883.
2. Saga, T., 2010. Advances in crystalline silicon solar cell technology for industrial mass production. Npg asia materials, 2(3): p. 96-102.
3. Schultz, O., Glunz, S.W. and Willeke, G.P., 2004. Short comunication: accelerated publication: Multicrystalline silicon solar cells exceeding 20% efficiency. progress in photovoltaics: research and applications, 12(7): p. 553-558.
4. Abdelkader, M.R., Al-Salaymeh, A., Al-Hamamre, Z. and Sharaf, F., 2010. A comparative analysis of the performance of monocrystalline and multiycrystalline PV Cells in semi arid climate conditions: the case of jordan. jordan Journal of mechanical and industrial engineering, 4(5), pp.543-552.
5. Möller, H.J., Funke, C., Rinio, M. and Scholz, S., 2005. Multicrystalline silicon for solar cells. Thin solid films, 487(1), pp.179-187.
6. Surek, T., 2005. Crystal growth and materials research in photovoltaics: progress and challenges. Journal of crystal growth, 275(1), pp.292-304.
7. Franke, D., Rettelbach, T., Häßler, C., Koch, W. and Müller, A., 2002. Silicon ingot casting: process development by numerical simulations. Solar energy materials and solar cells, 72(1), pp.83-92.
8. Kim, J.M. and Kim, Y.K., 2004. Growth and characterization of 240kg multicrystalline silicon ingot grown by directional solidification. Solar energy materials and solar cells, 81(2), pp.217-224.
9. Kim, D. and Kim, Y.K., 2006. Characteristics of structural defects in the 240kg silicon ingot grown by directional solidification process. Solar energy materials and solar cells, 90(11), pp.1666-1672.
10. Ganesh, R.B., Matsuo, H., Kawamura, T., Kangawa, Y., Arafune, K., Ohshita, Y., Yamaguchi, M. and Kakimoto, K., 2008. Estimation of growth rate in unidirectionally solidified multicrystalline silicon by the growth-induced striation method. Journal of crystal growth, 310(11), pp.2697-2701.
11. Wu, B., Stoddard, N., Ma, R. and Clark, R., 2008. Bulk multicrystalline silicon growth for photovoltaic (PV) application. Journal of crystal growth,310(7), pp.2178-2184.
12. Barvinschi, F., Stelian, C., Delannoy, Y., Mangelinck, N. and Duffar, T., 2003. Modeling the multi-crystalline silicon ingots solidification process in a vertical square furnace. Journal of optoelectronics and advanced materials, 5(1), pp.293-300.
13. Ouadjaout, D., Gritli, Y., Zair, L. and Boumaour, M., 2005. Growth by the heat exchanger method and characterization of multi-crystalline silicon ingots for PV. Rev. energ. ren, 8, pp.49-54.
14. Delannoy, Y., Barvinschi, F. and Duffar, T., 2007. 3D dynamic mesh numerical model for multi-crystalline silicon furnaces. Journal of crystal growth, 303(1): p. 170-174.
15. Arafune, K., Ohishi, E., Sai, H., Ohshita, Y. and Yamaguchi, M., 2007. Directional solidification of polycrystalline silicon ingots by successive relaxation of supercooling method. Journal of crystal growth, 308(1), pp.5-9.
16. Wei, J., Zhang, H., Zheng, L., Wang, C. and Zhao, B., 2009. Modeling and improvement of silicon ingot directional solidification for industrial production systems. Solar energy materials and solar cells, 93(9), pp.1531-1539.
17. Zhang, H., Zheng, L., Ma, X., Zhao, B., Wang, C. and Xu, F., 2011. Nucleation and bulk growth control for high efficiency silicon ingot casting.Journal of crystal growth, 318(1), pp.283-287.
18. Li, Z., Liu, L., Liu, X., Zhang, Y. and Xiong, J., 2014. Heat transfer in an industrial directional solidification furnace with multi-heaters for silicon ingots. Journal of crystal growth, 385, pp.9-15.
19. Chang, C.E. and Wilcox, W.R., 1974. Control of interface shape in the vertical bridgman-stockbarger technique. Journal of crystal growth, 21(1), pp.135-140.
20. Lun, L., Yeckel, A., Reed, M., Szeles, C., Daoutidis, P. and Derby, J.J., 2006. On the effects of furnace gradients on interface shape during the growth of cadmium zinc telluride in edg furnaces. Journal of crystal growth,290(1), pp.35-43.
21. Liu, Y.C., Roux, B. and Lan, C.W., 2007. Effects of cycle patterns of accelerated crucible rotation technique (ACRT) on the flows, interface, and segregation in vertical bridgman crystal growth. International journal of heat and mass transfer, 50(25), pp.5031-5040.
22. Vizman, D., Friedrich, J. and Mueller, G., 2007. 3D time-dependent numerical study of the influence of the melt flow on the interface shape in a silicon ingot casting process. Journal of crystal growth, 303(1), pp.231-235.
23. Miyazawa, H., Liu, L. and Kakimoto, K., 2008. Numerical investigation of the influence of material property of a crucible on interface shape in a unidirectional solidification process. Crystal growth and design, 9(1), pp.267-272.
24. Pizzini, S., Sandrinelli, A., Beghi, M., Narducci, D., Allegretti, F., Torchio, S., Fabbri, G., Ottaviani, G.P., Demartin, F. and Fusi, A., 1988. Influence of extended defects and native impurities on the electrical properties of directionally solidified polycrystalline silicon. Journal of the electrochemical society, 135(1), pp.155-165.
25. Kvande, R., Mjos, O. and Ryningen, B., 2005. Growth rate and impurity distribution in multicrystalline silicon for solar cells. Materials science and engineering: A, 413, pp.545-549.
26. Martinuzzi, S., Perichaud, I. and Palais, O., 2007. Segregation phenomena in large-size cast multicrystalline Si ingots. Solar energy materials and solar cells, 91(13), pp.1172-1175.
27. Liu, L., Nakano, S. and Kakimoto, K., 2008. Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells. Journal of crystal growth, 310(7), pp.2192-2197.
28. Teng, Y.Y., Chen, J.C., Lu, C.W. and Chen, C.Y., 2010. The carbon distribution in multicrystalline silicon ingots grown using the directional solidification process. Journal of crystal growth, 312(8), pp.1282-1290.
29. Teng, Y.Y., Chen, J.C., Huang, B.S. and Chang, C.H., 2014. Numerical simulation of impurity transport under the effect of a gas flow guidance device during the growth of multicrystalline silicon ingots by the directional solidification process. Journal of crystal growth, 385, pp.1-8.
30. Bellmann, M.P., Meese, E.A. and Arnberg, L., 2011. Effect of accelerated crucible rotation on the segregation of impurities in vertical bridgman growth of multi-crystalline silicon. Journal of crystal growth, 318(1), pp.239-243.
31. Bellmann, M.P., Meese, E.A. and Arnberg, L., 2010. Impurity segregation in directional solidified multi-crystalline silicon. Journal of crystal growth,312(21), pp.3091-3095.
32. Roland, W.L., P. Nithiarasu, and K. Seetharamu, Fundamentals of the finite element method for heat and fluid flow. 2004, John Wiley & Sons Ltd, Southern Gate, Chichester, West Sussex PO19.
33. Hewitt, G.F., G.L. Shires, and T.R. Bott, Process heat transfer. Vol. 113. 1994: CRC press Boca Raton, FL.
34. Smith, G.D., Numerical solution of partial differential equations: finite difference methods. 1985: Oxford university press.
35. Zhao, B.T., Gao, W.X. and Jia, C.C., 2013. Research on ingot casting process and properties of poly-silicon. In advanced materials research Vol. 772, pp. 739-743.