| 研究生: |
張嘉元 Chang, Chia-Yuan |
|---|---|
| 論文名稱: |
彎曲流道中剪切稀化流體之混合的數值研究 Numerical study on mixing of shear-thinning fluids in curved channels |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 微流體力學 、混合 、剪切稀化流體 、蜿蜒流道 、狄恩不穩定性 |
| 外文關鍵詞: | microfluidics, mixing, shear-thinning fluids, serpentine channel, Dean instability |
| 相關次數: | 點閱:151 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用商業計算軟體(CFDRC),來模擬去離子水和剪切稀化流體(羧甲基纖維素水溶液)在以下的微混合器中的流動與混合行為:具固定曲率半徑之蜿蜒流道,具步階式增減曲率半徑之蜿蜒流道及擁有漸縮漸擴截面積之蜿蜒流道。本研究探討在這些微混合器中,幾何尺寸對於流動與混合行為的影響。接著,比較去離子水與剪切稀化流體在等截面積之蜿蜒流道中流動的情形。最後,觀察較高流速下,剪切稀化流體於等截面積之蜿蜒流道內的狄恩不穩定性。從模擬的結果,可以得到以下的結論:(一)具漸縮漸擴寬度之蜿蜒流道會產生分離渦流,因此增進流體的混合。(二)剪切稀化流體在具漸縮漸擴截面之蜿蜒流道會有較小的表象黏滯係數。(三)由於狄恩不穩定性所生成之狄恩渦流會大幅地增進流體的混合。
In this work, we use commercial codes (CFDRC) to simulate the flow and mixing behaviors of DI water and shear-thinning fluids (aqueous solution of Carboxymethyl Cellulose) in the following micromixers:serpentine channel with constant curvature radius, serpentine channel with stepwise increasing and decreasing curvature radiuses and serpentine channel with converging-diverging cross section. We investigate the effect of geometry on the flow and mixing behaviors in these micromixers. We also compare the flow of DI water and shear-thinning fluids in serpentine channels with constant cross section area. Finally, we observe the Dean instability of the flow in serpentine channel with constant cross section for shear-thinning fluids with high velocity. From the simulation results, we have the following conclusions:(1) The converging-diverging width of serpentine channel causes separation vortex and so enhances fluid mixing. (2) Shear-thinning fluids in serpentine channels with converging-diverging section area shows a smaller average apparent viscosity. (3) The Dean vortexes due to instability considerably improves fluid mixing.
1.A. Manz, N. Graber and H. M. Widmer, “Miniaturized total chemical analysis system: a novel concept for chemical sensing, ” Sensor and Actuators, B: Chemical, Vol. 1, pp. 244-248, 1990.
2.V. Hessel, H. Löwe and F. Schönfeld, “Micromixers—a review on passive and active mixing principles, ” Chemical Engineering Science, Vol. 60, pp. 2479-2501, 2005.
3.Y. Yamaguchi, F. Takagi, T. Watari, K. Yamashita, H. Nakamuraa, H. Shimizu and H. Maedaa, “Interface configuration of the two layered laminar flow in a curved microchannel, ” Chemical Engineering Journal, Vol, 101, pp. 367-372, 2004.
4.F. Jiang, K. S. Drese, S. Hardt, M. Ku ̈pper and F. Schönfeld, “Helical flows and chaotic mixing in curved micro channels, ” American Institute of Chemical Engineers Journal, Vol, 50, pp. 2297-2305, 2004.
5.J. Xuan, M. K. H. Leung, D. Y. C. Leung and M. Ni, “Density-induced asymmertric pair of Dean vortices and its effects on mass transfer in a curved microchannel with two-layer laminar stream, ” Chemical Engineering Journal, Vol, 171, pp. 216-223, 2011.
6.S. P. Vanka, G. Luo and C. M. Winkler, “Numerical study of scalar mixing in curved channels at low Reynolds numbers, ” American Institute of Chemical Engineers Journal, Vol, 50, pp. 2359-2368, 2004.
7.S. Hossain, M. A. Ansari and K. Y. Kim, “Evaluation of the mixing performance of three passive micromixer, ” Chemical Engineering Journal, Vol, 150, pp. 492-501, 2009.
8.A. Afzal and K. Y. Kim, “Passive split and recombination micromixer with convergent-divergent walls, ” Chemical Engineering Journal, Vol, 203, pp. 182-192, 2012.
9.R.-T. Tsai and C.-Y. Wu, “An efficient micromixer based on multidirectional vortices due to baffles and channel curvature, ” Biomicrofluidics, Vol. 5, pp. 014103.1-014103.13, 2011.
10.C.-Y. Wu and R.-T. Tsai, “Fluid mixing via multidirectional vortices in converging–diverging meandering microchannels with semi-elliptical side walls, ” Chemical Engineering Journal, Vol. 217, pp. 320-328, 2013.
11.A. Alam and K. Y. Kim, “Analysis of mixing in a curved microchannel with rectangular grooves, ” Chemical Engineering Journal, Vol. 181-182, pp. 708-716, 2012.
12.A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651, 2002.
13.H. Fellouah, C. Castelain, A. O. E. Moctar and H. Peerhossaini, “A numerical study of Dean instability in non-Newtonian fluids,” Journal of Fluids Engineering, Vol. 128, pp. 34-41, 2006.
14.F. Delplac and J. C. Leuliet, “Generalized Reynolds number for the flow of power law fluids in cylindrical ducts of arbitrary cross-section,” Chemical Engineering Journal, Vol. 56, pp. 33-37, 1995.
15.W. Kozicki, C. H. Chou and C. Tiu, “Non-Newtonian flow in ducts of arbitrary cross-sectional shape,” Chemical Engineering Science, Vol. 21, pp. 665-679, 1966.
16.M. Boutabaa, L. Helin, G. Mompean and L. Thais, “Numerical study of Dean vortices in developing Newtonian and viscoelastic flows through a curved duct of square cross-section,” Comptes Rendus Mecanique, Vol. 337, pp. 40-47, 2009.
17.C. Srisamran and S. Devahastin, “Numerical simulation of flow and mixing behavior of impinging streams of shear-thinning fluids,” Chemical Engineering Science, Vol. 61, pp. 4884-4892, 2006.
18.J. Aubin, L. Prat, C. Xuereb and C. Gourdon “Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient,” Chemical Engineering and Processing, Vol. 48, pp. 554-559, 2009.
19.陳德翰, “具彎曲流道之微混合器中非牛頓流體的混合,” 國立成功大學機械工程研究所碩士論文, 2009.
20.蔡瑞堂, “促進彎曲流道中之流體混合的微結構設計,” 國立成功大學機械工程研究所博士論文, 2012.
21.R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, 2nd ed, Vol. 1, Wiley, New York, 1987.
22.R. P. Chhabra and J. F. Richardson, Non-Newtonian flow and applied rheology: Engineering Application, 2nd ed, Butterworth-Heinemann, Oxford, 2008.
23.R. M. Manglik and J. Ding, “Laminar flow heat transfer to viscous power-law fluids in double-sine ducts, ” International Journal of Heat and Mass Transfer, Vol. 40, No. 6, pp. 1379-1390, 1997.
24.U. Meseth, T. Wohland, R. Rigler and H. Vogel, “Resolution of fluorescence correlation measurements,” Biophysical Journal, Vol. 76, pp.1619 -1631, 1999.
25.A. L. Ventresca, Q. Cao and A. K. Prasad, “The influence of viscosity ratio on mixing effectiveness in a two-fluid laminar motionless mixer,” Canadian Journal of Chemical Engineering, Vol. 80, pp. 614-621, 2002.
26.J. Boss, “Evaluation of the homogeneity degree of a mixture,” Bulk Solids Handling, Vol. 6, pp. 1207-1215, 1986.
校內:2018-08-12公開