| 研究生: |
張宇良 Chang, Yu-Liang |
|---|---|
| 論文名稱: |
利用有限元素法求解相變化熱傳問題 Phase-Change Heat Transfer Analysis Using Finite Element Method |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 相變化 、潛熱 、熱傳 |
| 外文關鍵詞: | Phase change, latent heat, Heat Transfer |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝固在材料製程中扮演著很重要的角色,例如金屬材料之鑄造、熱電材料製程、半導體材料長晶等。其熱傳行為探討是應該被重視的。本文希望利用數值方法分析凝固過程中之溫度場變化情形。
本文研究對象是材料在凝固過程中潛熱的影響。數值方法採用有限元素法,建立自我滿足的網格形狀,並使用帶狀存取模式,直接利用高斯消去法求解溫度場。
在計算過程中,數學模型利用有限元素法做數值運算。使用單區法之等效比熱法來處理潛熱的效應,以一維史蒂芬問題(Stefan problem)和二維Rathjen相變化問題來作測試與分析。在有限元素法中,通常都是先將邊界帶入統御方程式再一同推導出欲求解之方程式。而在非線性的相變化熱傳問題中,分割成矩形元素,可利用高斯積分法離散處理潛熱問題,但三角形元素之閉合式積分公式不利於潛熱釋放之計算。
本文提出了利用數值積分中的積分點來解決三角形元素之問題。並針對不同積分點Case來比較總誤差(total error),而對稱的數值積分點有較高的準確性。並把總誤差繪製成機率密度曲線,有效的比較各種不同Case之積分點處理之準確性。
Solidification plays a very important role in material processes, for example, the casting process of a metal material, the fabrication process of thermoelectric materials, and the crystal growth of semiconductor materials. The behavior of the heat transfer in solidification processes should be taken seriously for the studies. In this thesis, the temperature fields of solidification processes are analyzed by using the numerical method.
The study is to handle the latent-heat influence in solidification processes of materials. The numerical scheme is the finite element method. The banded storage mode is used to store the coefficient matrix and the Gaussian elimination method is utilized to solve the temperature fields.
In the thesis, the effective specific heat method of the single-domain schemes is employed to deal with the latent-heat effects. The one-dimensional Stefan problem and the two-dimensional Rathjen one are applied to test and analyze. In the finite element method, the finite-element equations are derived from the combination of the governing equation and the boundary conditions generally. For the nonlinear phase-change problems, the Gauss integration method can be applied to calculate the latent heat releases of rectangle elements. However, the closed-form integration formula is not good for triangle elements to compute the latent heat effects.
In the research, the integration methods of integration points are used to deal with the problem of triangle elements mentioned above. The total errors are employed to compare and analyze the numerical results for different integration methods with different number of integration points. The symmetrical integrations points have the better temperature solutions. The computing results are also investigated by using the PDF (Probability Density Function), whose analysis is more effective than the total-error one.
[1]J. S. Hsiao, "An efficient algorithm for finite-difference analyses of heat transfer with melting and solidification," Numerical Heat Transfer, vol. 8, pp. 653-666, 1985/01/01 1985.
[2]W. L. Wood and R. W. Lewis, "A comparison of time marching schemes for the transient heat conduction equation," International Journal for Numerical Methods in Engineering, vol. 9, pp. 679-689, 1975.
[3]O. C. Zienkiewicz, et al., "The application of finite elements to heat conduction problems involving latent heat," Rock mechanics, vol. 5, pp. 65-76, 1973/08/01 1973.
[4]C. Bonacina, et al., "Numerical solution of phase-change problems," International Journal of Heat and Mass Transfer, vol. 16, pp. 1825-1832, 1973.
[5]R. Courant, "Variational methods for the solution of problems of equilibrium and vibrations," Bulletin of American Mathematical Society, vol. 49, pp. 1-23, 1943 1943.
[6]R. W. Clough, "The finite element method in plane stress analysis," ASCE Conf. on Electronic Computation, vol. 2nd, 1960.
[7]O. C. Zienkiewicz and Y. K. Cheung, "Finite elements in the solution of field problems," The Engineer, 1965.
[8]L. E. Goodrich, "Efficient numerical techniques for one dimensional thermal problems with phase change," Int. J. Heat Mass Transfer, vol. 21, pp. 615-621, 1978.
[9]G. Comini, Del Guidice, S., Lewis, R. W. and Zienkiewicz, O. C., "Finite element solution of non-linear heat conduction problems with special reference to phase change," International Journal for Numerical Methods in Engineering, vol. 8, pp. 613-624, 1974.
[10]R. E. White, "A Numerical Solution of the Enthalpy Formulation of the Stefan Problem," SIAM Journal on Numerical Analysis, vol. 19, pp. 1158-1172, 1982.
[11]R. E. White, "An Enthalpy Formulation of the Stefan Problem," SIAM Journal on Numerical Analysis, vol. 19, pp. 1129-1157, 1982.
[12]Q. T. Pham, "The use of lumped capacitance in the finite-element solution of heat conduction problems with phase change," International Journal of Heat and Mass Transfer, vol. 29, pp. 285-291, 1986.
[13]A. H. N. Nigro, and V. Fachinotti, "Phasewise numerical integration of finite element method applied to solidification processes," International Journal of Heat and Mass Transfer, vol. 43, pp. 1053-1066, 2000.
[14]吳瑞芳, "網狀晶之穩態成長有限元素模式分析," 國立成功大學工程科學系碩士論文, 2004.
[15]蔡政翰, "金屬液體流動對凝固微結構之影響分析," 國立成功大學工程科學系碩士論文, 1995.
[16]J. S. Hsiao, "An Efficient Algorithm For Finite-Difference Analyses of Heat Transfer with Melting and Solidification," Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, vol. 8, pp. 653-666, 1985.
[17]A. W. Date, "A Strong Enthalpy Formulation for the Stefan Problem," International Journal of Heat and Mass Transfer, vol. 34, pp. 2231-2235, 1991.
[18]V. R. Voller and C. R. Swaminathan, "General Source-Based Method for Solidification Phase Change," Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, vol. 19, pp. 175-189, 1991.
[19]T. C. Tszeng , Y.T. Im and S. Kobayashi, "Thermal Analysis of Solidification by the Temperature Recovery Method " International Journal of Machine Tools and Manufacture, vol. 29, pp. 107-120, 1989.
[20]J. A. Dantzig, "Modelling liquid–solid phase changes with melt convection," International Journal for Numerical Methods in Engineering, vol. 28, pp. 1769-1785, 1989.
[21]NAMBURU, et al., Effective modeling/analysis of isothermal phase change problems with emphasis on representative enthalpy architectures and finite elements vol. 36. Kidlington, ROYAUME-UNI: Elsevier, 1993.
[22]J. Stefan, "Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere," Annalen der Physik, vol. 278, pp. 269-286, 1891.
[23]Rathjen K. A. and Jili L. M., "Heat conduction with melting or freezing in a corner," ASME Journal of Heat Transfer, vol. 93, 1971.
[24]C.A.Felippa and R.W.Clough, "The finite element method in solid mechanics," SIAM-AMS Proceedings, vol. 2, pp. 210-252, 1970.
[25]P. Dunne, "Complete Polynomial Displacement Fields for the Finite Element Method," Aeronaut. J., vol. 72, 1968.
[26]K. H. Huebner, Thornton, Earl A., Byrom and Ted G., "The Finite Element Method For Engineers Third Edition," John Wiley & Sons, Inc., 1995.
[27]P. Davis and P. Rabinowitz, "Abscissas and Weights for Gaussian Quadratures of High Order," NBS J. of Research, vol. 56 No. 1, 1956.
[28]H. T. Rathod, Nagaraja, K. V., Venkatesudu, B. and N. L. Ramesh,, "Gauss Legendre Quadrature over a triangle," Indian Institute of Science, vol. 84, pp. 183-188, 2004.
[29]H. T. Rathod, Nagaraja, K. V., Venkatesudu, B., "Symmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface," Applied Mathematics and Computation, vol. 188, pp. 865-876, 2007.
[30]P. C. Hammer, Marlowe, O. J., Stroud, A. H., "Numerical Integration Over Simplexes and Cones," Mathematical Tables and Other Aids to Computation, vol. 10, pp. 130-137, 1956.
[31]C. H. Preston and A. H. Stroud, "Numerical Integration Over Simplexes," Mathematical Tables and Other Aids to Computation, vol. 10, pp. 137-139, 1956.
[32]C. H. Preston and A. W. Wymore, "Numerical Evaluation of Multiple Integrals I," Mathematical Tables and Other Aids to Computation, vol. 11, pp. 59-67, 1957.
[33]C. H. Preston and A. H. Stroud, "Numerical Evaluation of Multiple Integrals II," Mathematical Tables and Other Aids to Computation, vol. 12, pp. 272-280, 1958.
[34]C.-E. Fröberg, "Introduction to numerical analysis," ed: Nueva York, EUA : Addison-Wesley, 1965.
[35]B. Carnahan, Luther, H. A. and Wilkes, James O., "Applied numerical methods," ed: New York, 1969.
[36]G. R. Cowper, "Gaussian quadrature formulas for triangles," International Journal for Numerical Methods in Engineering, vol. 7, pp. 405-408, 1973.
[37]I. Robinson, "An Algorithm for Automatic Integration Over a Triangle Using Nonlinear Extrapolation," ACM Trans. Math. Softw., vol. 10, pp. 1-16, 1984.
[38]C. T. Reddy and D. J. Shippy, "Alternative integration formulae for triangular finite elements," International Journal for Numerical Methods in Engineering, vol. 17, pp. 133-139, 1981.
校內:2015-09-10公開