| 研究生: |
謝家漪 Hsieh, Chia-Yi |
|---|---|
| 論文名稱: |
過量表達Oct4可促進心肌細胞增生
--誘導性多潛能幹細胞實驗的啟發 Oct4 over-expression promotes cardiomyocyte proliferation -- Lessons learning from iPSing cells |
| 指導教授: |
謝清河
Hsieh, C.H. Patrick 劉校生 Liu, Hsiao-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 心肌細胞 、心肌再生 、細胞週期 、增生 |
| 外文關鍵詞: | Oct4, cardiomyocyte, cell cycle, cardiac regeneration, proliferation |
| 相關次數: | 點閱:109 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
統計結果顯示心臟衰竭是世界上的主要死因,這是由於心肌細胞增生能力低落而使得心臟再生能力有限所導致。心肌梗塞是造成的心臟損傷的原因之一,過程中大量的心肌細胞死亡以及疤痕組織的形成導致心臟功能永久的破壞,因此如何防止心肌細胞的死亡或是促進其增生變得極為重要。研究發現非哺乳類脊椎動物的心臟具有再生能力,經由實驗性切除部分心臟,在傷口附近可偵測到心肌前驅細胞出現,似乎暗示著新生的心肌細胞可能是由心肌前驅細胞分化而成。在2006年,日本學者Yamanaka發現4種對維持胚胎幹細胞多潛能相當關鍵的基因(Oct4、Sox2、Klf4和c-Myc) 可誘導成熟的老鼠纖維細胞回到多潛能性幹細胞的狀態,簡稱誘導性多潛能幹細胞(iPS cells)。根據這項令人驚訝的發現,我們假設利用iPS誘導基因以及早期心肌的標誌基因可以促進分化完全的心肌細胞逆分化(reprogramming)或增生。
為了增加心肌細胞轉染(transfection)效率,我們利用慢病毒 (lentivirus) 載體攜帶目標基因 (Oct4、Sox2、Klf4、c-Myc、Isl1和Tbx5)進行心肌細胞的生長測試。以碘化丙錠(propidium iodide)染色法分析,發現單獨表達Oct4就足以增加心肌細胞的細胞週期進程。此外,利用反轉錄聚合酶連鎖反應(reverse transcription-polymerase chain reaction)、免疫轉印法 (immunoblotting)以及細胞免疫染色(immunocytochemistry)分析,我們也進一步發現Oct4可誘導細胞有絲分裂相關調控因子cyclin A2、cyclin B1、Aurora B、Survivin以及磷酸化組織蛋白H3(phosphor-histone H3)的表現,並可觀察到心肌細胞進行核分裂(karyokinesis)和細胞質分裂(cytokinesis),且這個調控作用是透過Akt不相關的訊息路徑。總結以上研究,我們發現iPS的誘導因子-Oct4非常有潛力去促進心肌細胞再生,但是Oct4在老鼠體內是否具有相同效果,還需要進一步研究。
Congestive heart failure is the primary cause of death in the world. The limitation of heart regeneration has been ascribed to the low degree of cell mitosis in cardiomyocytes. Cardiac injuries, such as myocardial infarction, cause cardiomyocyte death and scar tissue displacement, leading to irreversible functional impairment. How to prevent apoptosis or promote proliferation of cardiomyocytes is thus important. Non-mammalian vertebrate heart has regenerative capacity, and may occur through cardiac progenitor cell differentiation. In 2006, Yamanaka’s group reported the use of four factors (Oct4, Sox2, Klf4, and c-Myc), which are crucial to pluripotent maintenance on embryonic stem cells, to reprogram mouse fibroblasts into induced pluripotent stem (iPS) cells. Base on Yamanaka’s idea, we try to use iPS-inducing factors and early cardiac markers to promote the reprogramming and/or proliferation of fully differentiated cardiomyocytes.
First, we established the lentivirus gene delivery system to enhance cardiomyocyte transfection efficiency. Using propidium iodide staining, we found that only Oct4 overexpression promoted cardiomyocyte proliferation. Additionally, we examined cell cycle related gene expression by RT-PCR and immunoblotting, and demonstrated that cyclin A2, cyclin B1, Aurora B, and phospho-histone H3 (H3P) were induced upon Oct4 expression. Furthermore, we observed Oct4-transduced cardiomyocytes undergoing karyokinesis and cytokinesis by staining cell mitosis markers such as H3P, AuroraB and Survivin. Oct4 was observed to co-exist with Ki-67 in the nucleus. Therefore, it is likely that Oct4 promotes cardiomyocyte proliferation by regulating cell cycle related molecules. In accordance with our immunoblotting data, this regulation probably was through Akt independent pathway. In summary, we found that the iPS factor Oct4 has the potential to promote cardiomyocyte proliferation. These preliminary data provide an attractive method to treat heart diseases.
Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276-1284.
Ahuja, P., Sdek, P., and MacLellan, W.R. (2007). Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87, 521-544.
Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., and Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699-702.
Assmus, B., Honold, J., Schachinger, V., Britten, M.B., Fischer-Rasokat, U., Lehmann, R., Teupe, C., Pistorius, K., Martin, H., Abolmaali, N.D., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355, 1222-1232.
Ausoni, S., and Sartore, S. (2009). From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration. J Cell Biol 184, 357-364.
Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17, 126-140.
Babick, A.P., and Dhalla, N.S. (2007). Role of subcellular remodeling in cardiac dysfunction due to congestive heart failure. Med Princ Pract 16, 81-89.
Barile, L., Messina, E., Giacomello, A., and Marban, E. (2007). Endogenous cardiac stem cells. Prog Cardiovasc Dis 50, 31-48.
Beltrami, A.P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763-776.
Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B.A., Druid, H., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science 324, 98-102.
Blelloch, R. (2008). Regenerative medicine: short cut to cell replacement. Nature 455, 604-605.
Boiani, M., and Scholer, H.R. (2005). Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6, 872-884.
Borchardt, T., and Braun, T. (2007). Cardiovascular regeneration in non-mammalian model systems: what are the differences between newts and man? Thromb Haemost 98, 311-318.
Brown, D.C., and Gatter, K.C. (2002). Ki67 protein: the immaculate deception? Histopathology 40, 2-11.
Buckingham, M., Meilhac, S., and Zaffran, S. (2005). Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6, 826-835.
Cai, C.L., Liang, X., Shi, Y., Chu, P.H., Pfaff, S.L., Chen, J., and Evans, S. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5, 877-889.
Campbell, P.A., Perez-Iratxeta, C., Andrade-Navarro, M.A., and Rudnicki, M.A. (2007). Oct4 targets regulatory nodes to modulate stem cell function. PLoS ONE 2, e553.
Card, D.A., Hebbar, P.B., Li, L., Trotter, K.W., Komatsu, Y., Mishina, Y., and Archer, T.K. (2008). Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 28, 6426-6438.
Chaudhry, H.W., Dashoush, N.H., Tang, H., Zhang, L., Wang, X., Wu, E.X., and Wolgemuth, D.J. (2004). Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem 279, 35858-35866.
Cohn, J.N., Ferrari, R., and Sharpe, N. (2000). Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35, 569-582.
Cowan, C.A., Atienza, J., Melton, D.A., and Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369-1373.
Deb, A., Wang, S., Skelding, K.A., Miller, D., Simper, D., and Caplice, N.M. (2003). Bone marrow-derived cardiomyocytes are present in adult human heart: A study of gender-mismatched bone marrow transplantation patients. Circulation 107, 1247-1249.
Dhalla, N.S., Dent, M.R., Tappia, P.S., Sethi, R., Barta, J., and Goyal, R.K. (2006). Subcellular remodeling as a viable target for the treatment of congestive heart failure. J Cardiovasc Pharmacol Ther 11, 31-45.
Egelhoff, T.T., and Fisher, S.A. (2006). Cardiac myocyte cytokinesis: The contractile ring is the thing. J Mol Cell Cardiol 41, 592-594.
Engel, F.B. (2005). Cardiomyocyte proliferation: a platform for mammalian cardiac repair. Cell Cycle 4, 1360-1363.
Engel, F.B., Hsieh, P.C., Lee, R.T., and Keating, M.T. (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci U S A 103, 15546-15551.
Engel, F.B., Schebesta, M., Duong, M.T., Lu, G., Ren, S., Madwed, J.B., Jiang, H., Wang, Y., and Keating, M.T. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19, 1175-1187.
Garry, D.J., and Olson, E.N. (2006). A common progenitor at the heart of development. Cell 127, 1101-1104.
Greco, S.J., Liu, K., and Rameshwar, P. (2007). Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25, 3143-3154.
Grinnell, K.L., Yang, B., Eckert, R.L., and Bickenbach, J.R. (2007). De-differentiation of mouse interfollicular keratinocytes by the embryonic transcription factor Oct-4. J Invest Dermatol 127, 372-380.
Guo, Y., Mantel, C., Hromas, R.A., and Broxmeyer, H.E. (2008). Oct-4 is critical for survival/antiapoptosis of murine embryonic stem cells subjected to stress: effects associated with Stat3/survivin. Stem Cells 26, 30-34.
Gurdon, J.B., and Melton, D.A. (2008). Nuclear reprogramming in cells. Science 322, 1811-1815.
Hanna, J., Markoulaki, S., Schorderet, P., Carey, B.W., Beard, C., Wernig, M., Creyghton, M.P., Steine, E.J., Cassady, J.P., Foreman, R., et al. (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250-264.
Hatcher, C.J., Kim, M.S., Mah, C.S., Goldstein, M.M., Wong, B., Mikawa, T., and Basson, C.T. (2001). TBX5 transcription factor regulates cell proliferation during cardiogenesis. Dev Biol 230, 177-188.
Hosenpud, J.D., Bennett, L.E., Keck, B.M., Boucek, M.M., and Novick, R.J. (2001). The Registry of the International Society for Heart and Lung Transplantation: eighteenth Official Report-2001. J Heart Lung Transplant 20, 805-815.
Hsieh, P.C., Davis, M.E., Lisowski, L.K., and Lee, R.T. (2006). Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol 68, 51-66.
Kitamura, T., Koshino, Y., Shibata, F., Oki, T., Nakajima, H., Nosaka, T., and Kumagai, H. (2003). Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 31, 1007-1014.
Kocher, A.A., Schuster, M.D., Szabolcs, M.J., Takuma, S., Burkhoff, D., Wang, J., Homma, S., Edwards, N.M., and Itescu, S. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7, 430-436.
Konstam, M.A. (2000). Progress in heart failure Management? Lessons from the real world. Circulation 102, 1076-1078.
Kuhn, B., del Monte, F., Hajjar, R.J., Chang, Y.S., Lebeche, D., Arab, S., and Keating, M.T. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13, 962-969.
Laugwitz, K.L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L.Z., Cai, C.L., Lu, M.M., Reth, M., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647-653.
Lepilina, A., Coon, A.N., Kikuchi, K., Holdway, J.E., Roberts, R.W., Burns, C.G., and Poss, K.D. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607-619.
Levkau, B., Schafers, M., Wohlschlaeger, J., von Wnuck Lipinski, K., Keul, P., Hermann, S., Kawaguchi, N., Kirchhof, P., Fabritz, L., Stypmann, J., et al. (2008). Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation 117, 1583-1593.
Liberatore, C.M., Searcy-Schrick, R.D., and Yutzey, K.E. (2000). Ventricular expression of tbx5 inhibits normal heart chamber development. Dev Biol 223, 169-180.
Liu, Y., Ji, L., Ten, Y., Wang, Y., and Pei, X. (2007). The molecular mechanism of embryonic stem cell pluripotency and self-renewal. Sci China C Life Sci 50, 619-623.
Lloyd-Jones, D.M., Larson, M.G., Leip, E.P., Beiser, A., D'Agostino, R.B., Kannel, W.B., Murabito, J.M., Vasan, R.S., Benjamin, E.J., and Levy, D. (2002). Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106, 3068-3072.
Lopez, A.D., Mathers, C.D., Ezzati, M., Jamison, D.T., and Murray, C.J. (2006). Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747-1757.
Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland, T., Endresen, K., Ilebekk, A., Mangschau, A., Fjeld, J.G., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355, 1199-1209.
Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L.S., Nguemo, F., Menke, S., Haustein, M., Hescheler, J., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118, 507-517.
McDevitt, T.C., Laflamme, M.A., and Murry, C.E. (2005). Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway. J Mol Cell Cardiol 39, 865-873.
Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., Salio, M., Battaglia, M., Latronico, M.V., Coletta, M., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95, 911-921.
Moretti, A., Caron, L., Nakano, A., Lam, J.T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., Sasaki, M., Martin-Puig, S., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151-1165.
Murry, C.E., Soonpaa, M.H., Reinecke, H., Nakajima, H., Nakajima, H.O., Rubart, M., Pasumarthi, K.B., Virag, J.I., Bartelmez, S.H., Poppa, V., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664-668.
Nadal-Ginard, B., Kajstura, J., Leri, A., and Anversa, P. (2003). Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92, 139-150.
Niwa, H. (2007). How is pluripotency determined and maintained? Development 134, 635-646.
Oh, H., Bradfute, S.B., Gallardo, T.D., Nakamura, T., Gaussin, V., Mishina, Y., Pocius, J., Michael, L.H., Behringer, R.R., Garry, D.J., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100, 12313-12318.
Pallante, B.A., Duignan, I., Okin, D., Chin, A., Bressan, M.C., Mikawa, T., and Edelberg, J.M. (2007). Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ Res 100, e1-11.
Pan, G.J., Chang, Z.Y., Scholer, H.R., and Pei, D. (2002). Stem cell pluripotency and transcription factor Oct4. Cell Res 12, 321-329.
Parmacek, M.S. (2006). Cardiac stem cells and progenitors: developmental biology and therapeutic challenges. Trans Am Clin Climatol Assoc 117, 239-255; discussion 255-236.
Peng, S.Y., Wang, W.P., Meng, J., Li, T., Zhang, H., Li, Y.M., Chen, P., Ma, K.T., and Zhou, C.Y. (2005). ISL1 physically interacts with BETA2 to promote insulin gene transcriptional synergy in non-beta cells. Biochim Biophys Acta 1731, 154-159.
Pesce, M., and Scholer, H.R. (2001). Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19, 271-278.
Pevny, L.H., and Lovell-Badge, R. (1997). Sox genes find their feet. Curr Opin Genet Dev 7, 338-344.
Poss, K.D., Wilson, L.G., and Keating, M.T. (2002). Heart regeneration in zebrafish. Science 298, 2188-2190.
Raff, M. (2003). Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 19, 1-22.
Reffelmann, T., and Kloner, R.A. (2003). Cellular cardiomyoplasty--cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc Res 58, 358-368.
Regula, K.M., Rzeszutek, M.J., Baetz, D., Seneviratne, C., and Kirshenbaum, L.A. (2004). Therapeutic opportunities for cell cycle re-entry and cardiac regeneration. Cardiovasc Res 64, 395-401.
Rosenthal, N. (2003). Prometheus's vulture and the stem-cell promise. N Engl J Med 349, 267-274.
Rowland, B.D., and Peeper, D.S. (2006). KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6, 11-23.
Ruchaud, S., Carmena, M., and Earnshaw, W.C. (2007). Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8, 798-812.
Sabbah, H.N., Sharov, V.G., and Goldstein, S. (2000). Cell death, tissue hypoxia and the progression of heart failure. Heart Fail Rev 5, 131-138.
Stewart, S., MacIntyre, K., Hole, D.J., Capewell, S., and McMurray, J.J. (2001). More 'malignant' than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail 3, 315-322.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
Takeuchi, J.K., and Bruneau, B.G. (2009). Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature.
Torella, D., Ellison, G.M., Nadal-Ginard, B., and Indolfi, C. (2005). Cardiac stem and progenitor cell biology for regenerative medicine. Trends Cardiovasc Med 15, 229-236.
Turner, J., and Crossley, M. (1999). Mammalian Kruppel-like transcription factors: more than just a pretty finger. Trends Biochem Sci 24, 236-240.
Vader, G., Kauw, J.J., Medema, R.H., and Lens, S.M. (2006). Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep 7, 85-92.
Weintraub, H., Tapscott, S.J., Davis, R.L., Thayer, M.J., Adam, M.A., Lassar, A.B., and Miller, A.D. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A 86, 5434-5438.
Weissman, I.L. (2000). Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157-168.
Wernig, M., Zhao, J.P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., and Jaenisch, R. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A 105, 5856-5861.
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810-813.
Wojakowski, W., Tendera, M., Kucia, M., Zuba-Surma, E., Paczkowska, E., Ciosek, J., Halasa, M., Krol, M., Kazmierski, M., Buszman, P., et al. (2009). Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53, 1-9.
Wu, S.M., Fujiwara, Y., Cibulsky, S.M., Clapham, D.E., Lien, C.L., Schultheiss, T.M., and Orkin, S.H. (2006). Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127, 1137-1150.
Xie, H., Ye, M., Feng, R., and Graf, T. (2004). Stepwise reprogramming of B cells into macrophages. Cell 117, 663-676.
Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920.
Zhang, J., Wilson, G.F., Soerens, A.G., Koonce, C.H., Yu, J., Palecek, S.P., Thomson, J.A., and Kamp, T.J. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104, e30-41.
Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., and Melton, D.A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455, 627-632.
Zimmermann, W.H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J.F., Kostin, S., Neuhuber, W.L., and Eschenhagen, T. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90, 223-230.