簡易檢索 / 詳目顯示

研究生: 白達拉
BANDARLA VINY KUMAR
論文名稱: 退火溫度下對ZnCo2O4奈米片和碳紙的誘導超電容性能
Induced Supercapacitor Performance of ZnCo2O4 Nanosheets on Carbon Paper by Annealing Temperature
指導教授: 蘇彥勳
Su,Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 52
中文關鍵詞: 水熱法製程ZnCo2O4奈米片狀碳紙輕質超級電容
外文關鍵詞: Hydrothermal process, ZnCo2O4 nanosheets, carbon paper, lightweight supercapacitors
相關次數: 點閱:40下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過簡單的水熱法製程、滴落塗佈法在不同的退火溫度下可以 成功的製備出ZnCo2O4 奈米片狀的網絡結構。在不同退火溫度下對 於ZnCo2O4的晶體結構、表面形貌和電化學特性都有顯著的影響。研 究結果顯示出,退火溫度為300度的ZnCo2O4電極在電流密度為3A/g下有171F/g的超高比電容。使用正極的ZnCo2O4-300 ºC和負極的AC在碳紙上成功製備出一種輕質、小型非對稱超級電容器(ASC)元件,在功率密度為126 W/kg下可表現出優異的能量密度1.33 Wh/kg和在 電流密度為10A/g經過1000次循環測試下可以表現出90%的電容保持 率和庫倫效率100%的優秀長期穩定性。

    關鍵字: 水熱法製程、ZnCo2O4奈米片狀、碳紙、輕質超級電容

    The network structure of ZnCo2O4 nanosheets are successfully achieved by a simple hydrothermal process, drop casting method, and adjusting the annealing temperature. It came to know that the crystal structure, morphology, and electrochemical performance of ZnCo2O4 nanosheets are significantly influenced by different annealing temperatures. It has been discovered that the electrode of ZnCo2O4 nanosheets that had been annealed at 300 °C shows an ultrahigh specific capacitance of about 171 F/g at a current density of 3 A/g. A lightweight and small asymmetric supercapacitor (ASC) device was successfully fabricated using the ZnCo2O4 -300 o C and AC as positive and negative electrodes on carbon paper, which showed an excellent energy density of 1.33 Wh/kg at a power density of 126 W kg−1, it reattained 90% capacitance retention and 100% coulombic efficiency over 1,000 cycles at a current density of 10 A/g superior cycle stability for supercapacitor application.

    Keywords: Hydrothermal process, ZnCo2O4 nanosheets, carbon paper, and lightweight supercapacitors.

    摘要….……………………………………………………………………............................................................i Abstract….…………………………………………………………….............................................................ii Acknowledgment……………………………………………………….....................................................iii Content ………………………………………………………………..............................................................iv List of Tables …………………………………………………......................................................................vi List of Figures ………………………………………………………….........................................................vii Chapter 1 Introduction…………………………………………………....................................................1 1.1. Preface.…………………………………………………………...............................................................1 1.2. Research objectives and motivation……………………………….........................................3 Chapter 2 Theoretical Background……………………………………...............................................4 2.1 Background of SCs……………………………………......................................................................4 2.2 Energy storage principles of SCs………………………............................................................5 2.3 ZnCo2O4 as an electrode material…………………………………….......................................6 2.4 Carbon paper as a current collector………………………………….........................................7 2.5 Potassium hydroxide (KOH) as an electrolyte………………………....................................7 Chapter 3 Experimental Section……………………………………….................................................8 3.1 Materials…………………………………………………………...............................................................8 3.2 Sample preparation……………………………………………..........................................................8 3.2.1 Hydrothermal synthesis of ZnCo2O4 nanosheets at different . annealing temperatures…………………………………………..............................................8 3.2.2 Drop casting of ZnCo2O4 nanosheets on carbon paper ……...........................9 3.2.3 Fabrication of negative electrode of activated carbon (AC)…….......................9 3.2.4 Assemble of ZnCo2O4 -300 oC //AC ASC device……………….............................9 3.3 Material Characterization………………………………………….................................................10 3.3.1 X-ray diffraction (XRD) …………………………………….................................................10 3.3.2 X-ray photoelectron spectroscopy (XPS)…………………….....................................10 3.3.3 Scanning electron microscopic (SEM) ……………………….....................................10 3.3.4 Transmission electron microscopic (TEM)……….…………......................................10 3.3.5 Electrochemical characterization …………………………............................................10 Chapter 4 Results and Discussion…………………………………….................................................13 4.1 Characterization of structure and morphology of ZnCo2(OH)6 and ZnCo2O4 nanosheets at different annealing temperatures….………....................................................13 4.2 Electrochemical performance of ZnCo2(OH)6, and ZnCo2O4eelectrode on carbon paper…………………………………………………….....................................................................25 4.3 Electrochemical performance of activated carbon (AC) …..……….............................39 4.4 Electrochemical performance of the asymmetric supercapacitor (ASC) device by two electrode system……………………….……………................................................................41 Chapter 5 Conclusion………………………………………………........................................................46 References… ………………………………………………………….............................................................47

    References

    1. Libich, J., et al., Supercapacitors: Properties and applications. Journal of Energy Storage, 2018. 17: p. 224-227.
    2. Olabi, A.G., et al., Supercapacitors as next generation energy storage devices: Properties and applications. Energy, 2022. 248: p. 123617.
    3. Qiu, K., et al., Hierarchical 3D Mesoporous Conch-like Co3O4 Nanostructure Arrays for High-Performance Supercapacitors, Electrochimica Acta, 2014. 141: p. 248-254.
    4. Kotz, R. and M. Carlen, Principles and applications of electrochemical capacitors' Electrochim, Acta, 45, 2483 (2000).
    5. Harichandran, G., et al., Sonochemical synthesis of chain-like ZnWO4 nanoarchitectures for high performance supercapacitor electrode application, Materials Characterization, 2020. 167: p. 110490.
    6. Huang, L., et al., Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-Performance pseudocapacitors, Nano Letters, 2013. 13(7): p. 3135-3139.
    7. Yu, F., L. Pang, and H.-X. Wang, Preparation of mulberry-like RuO2 electrode material for supercapacitors, Rare Metals, 2021. 40(2): p. 440-447.
    8. Park, B.-O., et al., Electrodeposited ruthenium oxide (RuO2) films for electrochemical supercapacitors, Journal of Materials Science, 2004. 39(13): p. 4313-4317.
    9. Kumari, S. and D. Bhatia, Design of hydroxylated MnO2 nano-bricks for high-performance supercapacitors, Materials Today: Proceedings, 2022. 58: p. 523-528.
    10. Zhou, H., et al., L-Alanine mediated controllable synthesis: Ultrathin Co3O4 nanosheets@Ni foam for high performance supercapacitors, Journal of Alloys and Compounds, 2021. 874: p. 160030.
    11. Zou, R., et al., Biomass derived porous carbon supported nano-Co3O4 composite for high-performance supercapacitors. Diamond and Related Materials, 2022. 126: p. 109060.
    12. Guan, B., et al., Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2014. 2(38): p. 16116-16123.
    13. Wu, Z., Y. Zhu, and X. Ji, NiCo2O4-based materials for electrochemical supercapacitors, Journal of Materials Chemistry A, 2014. 2(36): p. 14759-14772.
    14. Candler, J., et al., New insight into high-temperature driven morphology reliant CoMoO4 flexible supercapacitors, New Journal of Chemistry, 2015. 39(8): p. 6108-6116.
    15. Zhang, Y., et al., Binary metal oxide: advanced energy storage materials in supercapacitors, Journal of Materials Chemistry A, 2015. 3(1): p. 43-59.
    16. Lu, X.-F., et al., HierarchicalNiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors, Journal of Materials Chemistry A, 2014. 2(13): p. 4706-4713.
    17. Lu, Y., et al., Rationally designed hierarchical ZnCo2O4/C core-shell nanowire arrays for high performance and stable supercapacitors, Journal of Alloys and Compounds, 2021. 876: p. 160037.

    18. Liu, B., et al., New Energy Storage Option: Toward ZnCo2O4 Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors, ACS Applied Materials & Interfaces, 2013. 5(20): p. 10011-10017.
    19. Li, X., et al., Annealing temperature dependent ZnCo2O4 nanosheet arrays supported on Ni foam for high-performance asymmetric supercapacitor, Journal of Alloys and Compounds, 2019. 773: p. 367-375.
    20. Cong, W., et al., MnO2/ZnCo2O4 with binder-free arrays on nickel foam loaded with graphene as a high performance electrode for advanced asymmetric supercapacitors, RSC Advances, 2019. 9(56): p. 32889-32897.
    21. Rajesh, J.A. and K.-S. Ahn, Facile Hydrothermal synthesis and supercapacitor performance of mesoporous necklace-type ZnCo2O4 nanowires, Catalysts, 2021. 11(12).
    22. Wu, H., et al., A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale, 2015. 7(5): p. 1921-1926.
    23. Pan, Y., et al., Facile synthesis of ZnCo2O4 micro-flowers and micro-sheets on Ni foam for pseudocapacitor electrodes, Journal of Alloys and Compounds, 2017. 702: p. 381-387.
    24. Chen, H., et al., Facile synthesis of mesoporous ZnCo2O4 hierarchical microspheres and their excellent supercapacitor performance. Ceramics International, 2019. 45(7, Part A): p. 8577-8584.
    25. Kamble, G.P., et al., Reflux temperature-dependent zinc cobaltite nanostructures for asymmetric supercapacitors, Journal of Materials Science: Materials in Electronics, 2021. 32(5): p. 5859-5869.

    26. Wang, C., et al., NiCo2O4-Based supercapacitor nanomaterial, Nanomaterials, 2017. 7: p. 41.
    27. Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environmental Science, 2014. 7(5): p. 1597-1614.
    28. Deng, J., et al., Controlled synthesis of anisotropic hollow ZnCo2O4 octahedrons for high-performance lithium storage, Energy Storage Materials, 2018. 11: p. 184-190.
    29. Dubal, D., et al., Supercapacitors based on flexible substrates: An overview, Energy Technology, 2014. 2: p. 325-341.
    30. Sahoo, S. and J.-J. Shim, Facile Synthesis of three-dimensional ternary ZnCo2O4/reduced graphene oxide/NiO composite film on nickel foam for next generation supercapacitor electrodes, ACS Sustainable Chemistry & Engineering, 2017. 5(1): p. 241-251.
    31. Mary, A.J.C. and A.C. Bose, Surfactant assisted ZnCo2O4 nanomaterial for supercapacitor application, Applied Surface Science, 2018. 449: p. 105-112.
    32. Nguyen, V.H. and J.-J. Shim, Three-dimensional nickel foam/graphene/Ni Co2O4 as high-performance electrodes for supercapacitors, Journal of Power Sources, 2015. 273: p. 110-117.
    33. Wen, Y., et al., Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors, Journal of Materials Chemistry A, 2017. 5(15): p. 7144-7152.
    34. Wu, Z., et al., Controllable synthesis of ZnCo2O4 @NiCo2O4 heterostructures on Ni foam for hybrid supercapacitors with superior performance. Journal of Alloys and Compounds, 2022. 891: p. 162053.
    35. Zhu, Y., et al., Two-dimensional ultrathin ZnCo2O4 nanosheets: general formation and lithium storage application, Journal of Materials Chemistry A, 2015. 3(18): p. 9556-9564.
    36. Ding, R., et al., Crystalline NiCo2S4 nanotube array coated with amorphous NiCoxSy for supercapacitor electrodes, Journal of Colloid and Interface Science, 2016. 467: p. 140-147.
    37. Mohamed, S.G., et al., High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes, ACS Applied Materials & Interfaces, 2014. 6(24): p. 22701-22708.
    38. Yao, D., et al., Hierarchical NiO@NiCo2O4 core–shell nanosheet arrays on Ni foam for high-performance electrochemical supercapacitors, Industrial & Engineering Chemistry Research, 2018. 57(18): p. 6246-6256.
    39. Wei, X., et al., Facile synthesis of ultrathin ZnCo2O4 nanosheets/carbon cloth composite electrode for hybrid supercapacitors with high-rate and excellent reversibility. Materials Letters, 2021. 293: p. 129636.
    40. Isacfranklin, M., et al., Marigold flower like structured Cu2NiSnS4 electrode for high energy asymmetric solid state supercapacitors, Scientific Reports, 2020. 10(1): p. 19198.
    41. Li, W., et al., Hydrothermal Synthesized of CoMoO4 Microspheres as excellent electrode material for supercapacitor, Nanoscale Research Letters, 2018. 13.
    42. Tiwari, N., S. Kadam, and S. Kulkarni, Synthesis and characterization of ZnCo2O4 electrode for high-performance supercapacitor application, Materials Letters, 2021. 298: p. 130039.
    43. Zhang, Q., et al., CoP nanoprism arrays: Pseudocapacitive behavior on the electrode-electrolyte interface and electrochemical application as an anode material for supercapacitors, Applied Surface Science, 2020. 527: p. 146682.
    44. Zhang, M., et al., Ultrathin porous Mn(PO3)2 nanosheets and MoO2 nanocrystal arrays on N, P-dual-doped graphene for high-energy asymmetric supercapacitors, Chemical Engineering Journal, 2021. 403: p. 126379.
    45. Wang, J., et al., 3D heterogeneous ZnCo2O4 @NiMoO4 nanoarrays grown on Ni foam as a binder-free electrode for high-performance energy storage. Journal of Energy Storage, 2020. 32: p. 101899.
    46. Lv, J., et al., Investigation of microstructures of ZnCo2O4 on bare Ni foam and Ni foam coated with graphene and their supercapacitors performance, Journal of Energy Chemistry, 2017. 26(3): p. 330-335.
    47. Jian, X., et al., Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions, J. of Electrical Engineering, 2016. 4.
    48. Chinnadurai, D., et al., Inhibition of redox behaviors in hierarchically structured manganese cobalt phosphate supercapacitor performance by surface trivalent cations, ACS Omega, 2018. 3(2): p. 1718-1725.
    49. Ramirez, N., et al., Capacitive behavior of activated carbons obtained from coffee husk, RSC Advances, 2020. 10(62): p. 38097-38106.
    50. zhou, Y., et al., Controllable fabrication of ZnCo2O4 ultra-thin curved sheets on Ni foam for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019. 299: p. 388-394.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE