| 研究生: |
金培傑 Chin, Pei-Chieh |
|---|---|
| 論文名稱: |
無人飛機之複合材料起落架最佳化設計 Optimal Design of Composite Landing Gear for Unmanned Aerial Vehicle |
| 指導教授: |
王覺寬
Wang, Muh-Rong |
| 共同指導教授: |
梁燕祝
Liang, Yen-Chu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 複合材料Composite materials 、無人飛行載具Unmanned Aerial Vehicle 、UAV |
| 外文關鍵詞: | Unmanned Aerial Vehicle, Carbon fiber reinforced polymer, Composite materials |
| 相關次數: | 點閱:172 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複合材料(Composite Material)因為其製品依纖維與樹酯的特性而多樣性發展而廣被使用。舉凡纖維的量、樹酯的形式、以及纖維方向都由材料導向決定產品不同的特性。它具備質量輕、高強度、耐腐蝕、結構性強及抗疲勞等特性,且能依需求加強其功能特性設計,如增加材料結構剛性強度、提高韌性、加強耐衝擊性韌性高、耐衝擊性能佳、透光性等,目前已廣泛利用於航太工業、醫療業、運動用品、汽車船舶業、建築工業等。航太工業為要達到輕量型航空構件,並具備新穎創新想法、組件結構之耐用、減少油耗及抗腐蝕性能,且損壞時易於維護等因素,新型之航空器已大量增加使用複合材料之比例。
近幾年利用無人飛行載具(Unmanned Aerial Vehicle ,UAV )進行監控、探索、運送等運用,明確表示無人載具已經無聲無息的一步一步接近民眾生活中,不論用於娛樂、運輸、勘查等都已經充分表達無人載具在科技應用方面廣泛地發展,同時也大大的提升大家對於無人載具之興趣。就軍事方面來說,可利用無人飛行載具針對機敏場所之監控、標的物之搜尋、資訊之交換及作戰時即時實況回饋之用途上。在整體製作過程中,除了要能負載所需功能的儀器設備是最高價的產品外,尚需具備質量輕、高強度且結構性可以保護內部裝置及延長壽命之特性,上述都是設計者考慮及追求之目標。因此,要怎樣如何有效地強化結構,進行模擬分析在設計過程中是非常重要的一環。在固體力學的領域中,分析結構受力的軟體很多,其中,Ansys具備龐大的數值模擬分析功能,其中包含靜力分析、振動模態、流力及熱傳等等,因此本論文此軟體輔助執行分析及驗證實驗結果。
本研究以無人飛行載具的起落架設計與製作為出發點,利用曲面的設計,製作模具,針對5kg重的無人飛行載具,載重10kg的負載,載重比2的需求,設計符合的碳纖維起落架。依複合材料層板堆疊的層數、纖維方向等參數變化,探討如何製作最佳的產品。實驗過程中,利用應變規量測應變與Ansys分析的結果相互驗證,在符合安全係數3-4的範圍(模擬3g或4g重落地)作為標準,選取最佳的碳纖維起落架設計。研究結果以12層碳纖維預浸布0度縱向堆疊,抗壓性最大,且最大應力在安全係數4的要求規範內。
Composite materials stand out through a wide diversity in their behaviours which are born of an association of fibers and resin. The amount of fibers, the type of reinforcement and their fiber orientation are determining elements that may lead to materials with completely different characteristics. The characteristics of composite materials include low density, high strength, anticorrosion, easy construction, and anti-fatigue. On the other hand, the demand enhancement for special function can be included in the composite product design. For example, the high rigidness structure, the increasing of toughness, the toughness enhance of impact loading, and the transmittance requirement attract the users to develop the wide applications of composite materials in aeronautical industries, medical fields, sport equipment, cars and boats and construction industries. In aeronautic and astronautic fields, the aims of vehicles in the air are reducing the weight to save the fuel, the high endurance of structures on the out space, capabilities of corrosion resistance and easy to repair. The applications of new developed composite materials attracted large market in the new generation aircrafts.
Unmanned Aerial Vehicle has been used worldwide for industrial applications, including: 1. surveying of objects and ground on the basis of orthographic photos to generate point clouds, volume calculations, digital height and 3D models, 2. bridge inspection, visual structure assessment and monitoring, inspection and survey of structures. 3. surveying, mapping, aerial images and photography, 4. Inspection and monitoring. In military, an unmanned combat aerial vehicle (UCAV) that usually carries aircraft ordnance such as missiles and is used for drone strikes. Thus, the loading capability of UAV is an important specification for the users. We need a strong landing gear to make sure the safe taking off and landing of UAV.
In this thesis, the analysis, design, and manufacture of composite landing gear for UAV are performed. A curved landing gear will be designed for a small UAV of 5kg weight and having maximum loading of 10kg. The design parameters of carbon fiber reinforced polymer (CFRP) landing gear is the number of layers and fiber orientations. The experiments includes the manufacture of CFRP landing gear, the setup and programming of signal acquisition for strain by using LabVIEW, and the operation of loading system by using material test stand (MTS). The results show that the strains comparing from experimental measurements with simulations are accuracy and the designed landing gear is safe under the constraint of safety factor 4.
[1]維基百科,複合材料https://zh.wikipedia.org/wiki/複合材料.
[2]劍橋大學網站,Strength - Density
http://www-materials.eng.cam.ac.uk/mpsite/interactive_charts/strength-density/NS6Chart.html?fbclid=IwAR2SNOi4s4Fi25m232IMop3MyIX9wKcvRCgMe6t24WJdexLmDE-z9h39jAA
[3]http://www.hk-phy.org/energy/transport/trans_phy/images/plane_force_c.gif
[4]經濟部工業局主辦,工研院航太中心執行,航太工業發展推動專案-飛機人才訓練計畫,”Aircraft Modification Basic Class” ,May~July 1999。
[5] Stock SP Aerospace,http://www.sp-aerospace.com/.
[6]簡銘熹,輕型運動航空載具複合材料主起落架負載分析,碩士論文,淡江大學航空太空工程學系,陳步偉教授指導,2010 年出版。
[7]Yong-Bin Park, Khanh-Hung Nguyen, Jin-Hwe Kweon and Jin-Ho Choi, DOI:10.5139/IJASS.2011.12.1.84, Structural Analysis of a Composite Target-drone, Int’l J. of Aeronautical & Space Sci. 12(1) , pp.84–91, 2011
[8]Kshitij Shrotri, COMPOSITE SKID LANDING GEAR DESIGN INVESTIGATION, In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Aerospace Engineering School of Aerospace Engineering Georgia Institute of Technology, pp.23-66, August 2008
[9]N. Pitatzis,G. Savaidis,P. Panagiotou,K. Yakinthos, 58th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau,pp.1-10, 08 – 12 September 2014
[10]Daniel J. Thompson, Joshuo Feys, Michael D. Filewich,Sharif Abdel-Magid, Dennis Dalli, and Fumitaka Goto, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,Orlando, Florida, pp.1-11, 4-7 January 2011
[11]INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ISSN, Volume 6, Issue 2, pp.10-18, February 2015
[12]百度百科,碳纖維複合材料,(CFRP)Carbon Fiber Reinforced Polymer
https://baike.baidu.com/item/%E7%A2%B3%E7%BA%A4%E7%BB%B4%E5%A4%8D%E5%90%88%E6%9D%90%E6%96%99
[13]王智永,永虹科技股份有限公司,工業材料雜誌313期,2013, https://www.materialsnet.com.tw/DocView.aspx?id=10818
[14]維基百科,https://zh.wikipedia.org/wiki/LabVIEW