研究生: |
黃信諭 Huang, Hsin-Yu |
---|---|
論文名稱: |
石墨與蛭石的添加對半碳化銅/酚醛樹脂基摩擦材料機械及磨潤性質之影響 Effects of Addition of Graphite and Vermiculite on Mechanical and Tribological Properties of Semi-Carbonized Copper/Phenolic Resin-based Friction Material |
指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
共同指導教授: |
李國榮
Lee, Kuo-Jung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 半金屬摩擦材料 、半碳化 |
外文關鍵詞: | semi-metallic friction material, semi-carbonizing |
相關次數: | 點閱:127 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為延續實驗室過去半金屬摩擦材料所進行之研究,得知紅銅纖維/紅銅粉末的相對含量、半碳化溫度及石墨粉與雲母粉之添加之最佳製程參數-T3X1Y1試片具有適當的摩擦係數與低磨耗量,並且在噪音表現上較無噪音出現。
本研究以T3X1Y1試片為出發點且以摩擦時無噪音為前提,探討是否能在不使制動力減少太多的情況下,進一步改良T3X1Y1試片磨耗量較商業試片為多的問題。主要是以蛭石取代雲母作為摩擦調整劑,藉此探討此方式對半金屬摩擦材料在機械、磨潤等性質及在摩擦過程中噪音表現之影響,並進一步開發適合單車煞車使用之摩擦材料。
實驗結果顯示,添加蛭石之後試片摩擦係數顯著上升,但添加量過高時,反而造成摩擦係數起伏過大及磨耗量較高之現象,因此選擇適當的石墨與蛭石添加比例才能有助於自製試片磨耗性能之提升,勝過商業試片之表現,達到本研究之目的。
SUMMARY
This research is based on the past research of semi-metallic friction material, and we use copper fiber as reinforcement, copper powder, phenolic resin, and graphite powder as our material. In my research, I use vermiculite as the additives, and design three different series with different addition of graphite powder. In each series, I change the amount of vermiculite to investigate the influence to the properties of tribological and mechanical.
The results show that the coefficient of friction is increased as the addition of vermiculite rises up, but dramatically decreased when the addition of vermiculite keeps going up due to unstable friction surface and excess powder-like wear debris. Besides, there’s some noise being detected during the test procedure of specimens with higher amount of vermiculite. As for the weight loss, it is increased as the addition of vermiculite rises up. Therefore, I add more graphite powder as solid lubricants in order to compromise between the coefficient of friction and the weight loss.
In conclusion, specimen TGBVA has proper coefficient of friction, relatively low weight loss, noiseless while braking, and good mechanical properties. As a result, TGBVA is a better choice among all specimens.
A. Saffar, A. Shojaei. Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials, Wear 269: 145-151, 2010.
Abebe M, Appl FC. Theoretical analysis of the basic mechanics of the abrasive processes. Part 1: General model. Wear 126: 251-266, 1988.
Amira Sellami, Mohamed Kchaou, Riadh Elleuch, Anne-Lise Cristol, Yannick Desplanques. Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material. Materials and Design 59: 84-93, 2014.
Anderson AE. Friction and wear of Automotive Brakes. In Henry SD, editor. ASM Handbook, Vol. 18, Metals Park, OH 44073: ASM International: 569-577, 1992.
Awasthi S, Wood JL. C-C composite materials for aircraft brakes. Advanced Ceramic Materials 3: 449-451, 1988.
Bergman F, Eriksson M, Jacobson S. Influence of disc topography on generation of brake squeal. Wear 225-229: 621-628, 1999.
Bhabani K. Satapathy, Amar Patnaik, Nandan Dadkar, Dilip K. Kolluri, Bharat S. Tomar. Influence of vermiculite on performance of flyash-based fibre-reinforced hybrid composites as friction materials. Materials and Design 32: 4354-4361, 2011
Bowden FP, Tabor D. The friction and lubrication of solid. Oxford: Clarendon Press: 87, 1950.
Chester J. Friction materials. US Pat 4273699, 1980.
Filip Bergman, Mikael Eriksson, Staffan Jacobson. Influence of disc topography on generation of brake squeal Wear 225-229, 1999.
H. Jang, J.S. Lee, J.W. Fash. Compositional effects of the brake friction material on creep groan phenomena. Wear 251: 1477-1483, 2001.
Horiguchi K. Non-asbestos friction material. US Pat 5106887, 1992.
Hutchings IM. Mechanisms of wear in powder technology: a review. Powder Technol 76:3-13, 1993.
Jacko MG, Ducharme RT, Somers JH. Brake and clutch emissions generated during vehicle operation. SAE Trans 35: 1813-1831, 1973.
Jacko MG, Rhee SK. Brake linings and clutch facings. In Grayson M, editor. Encyclopedia of composite materials and components, Wiley: 144-154, 1983.
Jia X, Zhou B, Chen Y, Jiang M, ling X. Study on worn surface layers of the friction materials and grey cast iron. Tribol 15(2): 171-176, 1995.
Kim SJ, Cho MH, Lim D-S, Jang H. Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear 251: 1484–1491, 2001.
K.-H. Zum Gahr. Sliding wear of ceramic-ceramic, ceramic-steel and steel-steel pairs in lubricated and unlubricated contact. Wear 133, Issue 1, 1989.
Kamioka N. Production of friction material. Japanese Laid-Open Patent Publication 63-310770, 1988.
Kamioka N. Production of friction material. Japanese Laid-Open Pat Pub 63-310770, 1988.
Lam R, Chen YF. Friction lining materials. US Pat 5676577, 1997.
LAUSEVIC and MARINKOVIC, Mechanical properties and chemistry of carbonization of phenol formaldehyde resin. Carbon 24 5 575-580, 1986.
Nan Hoang Traffic Instrument Co., Ltd.
Newman LB. Friction materials. New Jersey. USA: Noyes data corporation: 1, 1978.
Ohya K, Sayama N. Frictional material for brake. Japanese Laid-Open Pat Pub 04-022827, 1992.
Ohya K, Sayama N. Friction material for brake. US Pat 5344854, 1994.
P. M. Huang, M.K. Wang. MINERALS, PRIMARY. Encyclopedia of Soils in the Environment 500-510, 2005.
Rhee SK. Wear mechanisms at low-temperatures for metal-reinforced phenolic resins. Wear 23: 261-263, 1973.
Rhee SK, Kwolek JP. Sponge iron friction material. US Patent 3835118, 1974.
Richardson RCD. The abrasive wear of metals and alloys. Proc Instn Mech Engrs 182(3A): 410-414, 1967.
Vishwanath B, Verma AP, Kameswara Rao CVS. Effect of reinforcement on friction and wear of fabric reinforced polymeric composites. Wear 167: 93-99, 1993.
Wright MA, Butson G. On-highway brake characterization and performance evaluation. Materially Speaking 11(1): 1-7, 1997.
Yuji H, Takahisa K. Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads. Tribol Transactions 39(2): 346-353, 1996.
行政院勞工委員會勞工安全衛生研究所,煞車來令業勞工石棉暴露防治研究,台北,中華民國85年
何淑靜,銅/酚醛樹脂基半金屬摩擦材料磨潤性質研究,國立成功大學材料科學及工程學系,台南市,中華民國93年
洪銘,石墨與雲母的添加對半金屬基銅/酚醛樹脂摩擦材料機械及磨潤性質之影響,國立成功大學材料科學及工程學系,台南市,中華民國104年
高維山譯,煞車系統設計及安全性,科技圖書,台北市,中華民國93年
鄭勝仁,碳化溫度及銅纖維含量對銅/酚醛樹脂半金屬基摩擦材料機械及磨潤性質的影響,國立成功大學材料科學及工程學系,台南市,中華民國96年
蘇家萱,纖維與石墨的添加對半碳化銅/酚醛樹脂摩擦材料機械及磨潤性質之影響,國立成功大學材料科學及工程學系,台南市,中華民國103年