| 研究生: |
林牧融 Lin, Mu-rong |
|---|---|
| 論文名稱: |
薄膜反應器之水氣轉移反應數值計算 The simulation study on the water-gas shift reaction with a membrane reactor |
| 指導教授: |
陳維新
Chen, Wei-shin 江滄柳 Jiang, Tsung Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 薄膜反應器 、數值計算 、水氣轉移反應 |
| 外文關鍵詞: | membrane reactor, water-gas shift reaction, simulation |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於石油能源即將耗盡,提升產氫技術,並以氫能取代石油在能源應用之地位,是一迫切而重要之研究課題。煤炭氣化是一重要產氫方法,然而,其產生之氣化合成氣,除了含有高濃度之氫氣外,亦含有相當高濃度之一氧化碳。為了純化並提高氫氣濃度,可藉由適當之觸媒材料進行水氣轉化反應,將合成氣中部份之一氧化碳轉化成為氫氣。同時,若透過如鈀或鈀合金之氫氣分離薄膜,將轉化之氫氣抽離水氣轉化反應器,可將轉化程度提高至超越熱力學平衡反應之極限值。本研究建立一可完整分析薄膜反應器之水氣轉化反應之數值模式,其物理模式包括:高溫水氣轉化反應模式、低溫水氣轉化反應模式、觸媒多孔性介質流體傳輸模式及薄膜氫氣滲透模式等。本研究以此計算模式分析探討薄膜反應器對於水氣轉化反應之影響。
Coal gasification is one of the useful approaches for hydrogen production. However, the syngas of coal gasification contains not only a high concentration of hydrogen, but also a relatively high concentration of carbon monoxide. The carbon monoxide in syngas can be transformed to hydrogen by the water-gas shift reaction through appropriate catalyst, raising the content of hydrogen in the syngas. If a membrane reactor, using Pd or Pd alloy membrane to separate the produced hydrogen from the reactor, is used for the water-gas shift reaction, the total hydrogen produced will reach an amount higher than the thermodynamic-equilibrium limit allows. In the present study, a numerical model was developed for the water-gas shift reaction in a membrane reactor. The physical models include: the high-temperature water-gas shift reaction model, the low-temperature water-gas shift reaction model, the flow model in a catalytic porous medium and the model for hydrogen permeating through a membrane. The numerical model is applied to the analysis of the influence of a membrane reactor on the water-gas shift reaction.
1. Antonizaai, A.B., Haasz, A.A., and Strangeby, P.C., “The effect of adsorbed carbon and sulphur on hydrogen permeation through palladium,” Journal of Nuclear Materials, Vol.162, pp.1065-1070, 1989.
2. Amano, M., Nishimura, C., and Komaki, M., “Effect of high concentration of CO and CO2 on hydrogen permeation through the palladium membrane,” Materials Transactions JIM(JAPAN INST METALS), Vol.31, pp.404, 1990.
3. Arstad, B., Venvik, H., Klette, H., Walmsley, J.C., Tucho, W.M., Holmestad, R., Holmen, A., Bredesen, R., “Studies of self-supported 1.6 μm Pd/23 wt.% Ag membranes during and after hydrogen production in a catalytic membrane reactor,” Catalysis Today, Vol.118, pp.63-72, 2006.
4. Basile, A., Chiappetta, G., Tosti, S., Violante, V., “Experimental and simulation of both Pd and Pd/Ag for a water-gas shift membrane reactor,” Separation and Purification Technology, Vol.25, pp. 549-571, 2001.
5. Balamurali, K.R.N., Michael, P.H., “Hydrogen generation in a Pd membrane fuel processor: productivity effects during methanol steam reforming,” Chemical Engineering Science, Vol.61, pp.6616-6636, 2006.
6. Bryden, K. J., Ying, J.Y., “Nanostructured palladium–iron membranes for hydrogen separation and membrane hydrogenation reactions,” Journal of Membrane Science, Vol.203, pp.29-42, 2002.
7. Chen, W.H., Hsieh T.C., Jiang T.L., “An experimental study on carbon monoxide conversion and hydrogen generation from water gas shift reaction,” Energy Conversion and Management, Vol.49, pp. 2801-2808, 2008.
8. Damle, A., Ganwal, S., Venkataram, V., “A simple model for a water-gas shift membrane reactor,” Gas Separation and Purification, Vol.8, pp.101-106, 1994.
9. Dittmeyer, R., Höllein, V., Daubb, K., “Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium,” Journal of Molecular Catalysis A: Chemical, Vol.173, pp.135-184, 2001.
10. Ergun, S., “Fluid Flow through Packed Columns,” Chemical Engineering Progress, Vol.48, pp.89-94, 1952.
11. Felipe, B.L. “The high-temperature, high-pressure homogeneous water-gas shift reaction in a membrane reactor,” Ph.D. Thesis, University of Pittsburgh, 2004.
12. Fabiano, A.N.F., Aldo, B.S.J., “Methane steam reforming modeling in a palladium membrane reactor,” Fuel, Vol.85 , pp.569-573, 2006.
13. Fluent 6.2 User Manual
14. Grashoff, G.L., Pilkington, C.E., and Corti, C.W., “The purification of hydrogen-a review of the technology emphasizing the current status of palladium membrane diffusion,” Platinum Metals Review, Vol.27, pp.157-165, 1983.
15. Gondal, M.A., Hameed, A., Yamani, Z.H., Suwaiyan, A., “Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe2O3,” Applied Catalysis A: General, Vol.268, pp.159-167, 2004.
16. Gallo, M, Nenoff , T.M., Mitchell , M.C., “Selectivities for binary ixtures of hydrogen/methane and hydrogen/carbon dioxide in silicalite and ETS-10 by Grand Canonical Monte Carlo techniques,” Fluid Phase Equilibria, Vol.247, pp.135-142, 2006.
17. Hameed, A., Gondal, M.A., “Production of hydrogen-rich syngas using p-type NiO catalyst: a laser-based photocatalytic approach,” Journal of Molecular Catalysis A: Chemical, Vol.233, pp.35-41, 2005.
18. Ilias S., “Separation of hydrogen and carbon dioxide using a novel membrane reactor in advanced fossil energy conversion process, ” DOE Annual Report, 2002.
19. Keuler, J.N., Lorenzen, L. “Developing a heating procedure to optimize hydrogen permeance through Pd-Ag membranes of thickness less than 2.2 μm,” Journal of Membrane Science, Vol.195, pp.203-213, 2002.
20. Knapton, A.G., “Palladium alloys for hydrogen diffusion membranes-a review of high permeability materials,” Platinum Metals Review, Vol.21, pp.44-55, 1977.
21. Kaldis, S. P., Kapantaidakis, G. C., Sakellaropoulos, G. P., “Simulation of multiconponent gas separation in a hollow fiber membrane by orthogonal collocation-hydrogen recovery from refinery gases,” Journal of Membrane Scenic, Vol.173, pp.61-71, 2000.
22. Kaldis, S.P., Skodras, G.C., Sakellaropoulos, G.P., “Energy and capital cost analysis of CO2 capture in coal IGCC processes via gas separation membranes,” Fuel Processing Technology, Vol.85, pp.337-346, 2004.
23. Keiski, R.L., Desponds, O., Chang ,Y.F. , Somorjai, G.A., “Kinetic of the water-gas shift reaction over several alkane activation and water-gas shift catalysts,” Applied Catalysis A: General, Vol.101, pp.317-338, 1993.
24. Killmeyer, R., Howard, B., Ciocco, M., Morreale, B., Enick, R.,Bustamante, F., “Water-gas shift membrane reactor studies,” FY 2004 Progress Report, DOE Hydrogen Program, National Energy Technology Laboratory, 2004.
25. Kuo, K.K., “Principle of combustion” , John Wiley & Sons, 2005.
26. Kim, G.Y., Mayor , J.R., Ni, J., “Parametric study of microreactor design for water gas shift reactor using an integrated reaction and heat exchange model,” Chemical Engineering Journal, Vol.110, pp.1-10, 2005.
27. Kulprathipanja, A., Alptekin G.O., Falconer, J.L., Way, J.D., “Effects of water gas shift gases on Pd-Cu alloy membrane surface morphology and separation properties,” Industrial and Engineering Chemistry Research, Vol.43, pp.4188-4198, 2004.
28. Kær, S.K., Dahlqvist, M., Saksager, A., Bang, M., Nielsen, M. P., Korsgaard, A., “Development and validation of a CFD-based steam reformer model,” Fuel Cell Seminar, 2006.
29. Li, A.W., Liang, W.Q., Hughes, R., “Characterisation and permeation of palladium stainless steel composite membranes,” Journal of Membrane Science, Vol.149, 259-268, 1998.
30. Li, A., Liang, W., Hughes, R., “The effect of carbon monoxide and stream on the hydrogen permeability of a Pd/Stainless steel membrane,” Journal of Membrane Science, Vol.165, pp.135-141, 2000.
31. Lee, B.H., Ito, T., “Electron-beam irradiation effects on luminescence roperties in subsurface regions of single-crystalline sapphires treated with and without hydrogen plasma exposures,” Journal of Luminescence, Vol.126, pp.393-402, 2007.
32. Lu, X., Yang, Q., Xiao, C., Hirose, A., “Effects of hydrogen flow rate on the growth and field electron emission characteristics of diamond thin films synthesized through graphite etching,” Diamond & Related Materials, Vol.16, pp.1623-1627, 2007.
33. McBridge, R.B., Mckinley, D.L., “A new hydrogen recovery route,” Chemical Engineering Progress, Vol.61, pp.81-86, 1965.
34. Mardilovich, P.P., She, Y., Ma, Y.H., Rei, M.H., “Defect-free palladium embranes on porous stainless-steel support,” American Institute of Chemical Engineers Journal, Vol.44, 310-322, 1998.
35. Marigliano, G., Barbieri, G., Drioli, E., “Equilibrium conversion for a Pd-based membrane reactor. Dependence on the temperature and pressure,” Chemical Engineering and Processing, Vol.42, pp.231-236, 2003.
36. Maxim, L., Dennis, W., “A reforming system for co-generation of hydrogen and mechanical work from methanol,” Journal of Power Sources, Vol.162, pp.597-605, 2006.
37. Nielsen, M., Korsgaard, A., Mandø, M., Bovo, M., Kaer, S., Bang, M., “Experimental characterization and modeling of an ethanol steam reformer, ” Fuel Cell Seminar, 2006.
38. Rahimpour, M.R., Ghader, S., “Enhancement of CO conversion in a novel Pd-Ag membrane reactor for methanol synthesis,” Chemical Engineering and Processing, Vol.43, pp.1181-1188, 2004.
39. Shirasaki, Y., Tsuneki, T., Yasuda, I., “Application of membrane reformer to hydrogen production from various hydrocarbon fuels,” Fuel Cell Seminar, 2006.
40. Tong, J.H., Matsumura, Y., “Thin Pd membrane prepared on macroporous stainless steel tube filter by an in-situ multi-dimensional plating echanism,” Chemical Communication, Vol.21, 2460-2461, 2004.
41. Tournier, G., Pijolat, C., “Selective filter for SnO2-based gas sensor: application to hydrogen trace detection,” Sensors and Actuators B, Vol.106, pp.553-562, 2005.
42. Tiemersma, T.P., Patil, C.S., Annaland, M.V.S., Kuipers, J.A.M., “Modeling of packed bed membrane reactors for autothermal production of ultrapure hydrogen,” Chemical Engineering Science, Vol.61, pp.1602-1616, 2006.
43. Uemiya, S., Sato, N., Ando, H. and Kikuchi, E., “Water-gas shift reaction assisted by a palladium membrane reactor,” Industrial and Engineering Chemistry Research, Vol.30, pp.585-589, 1991.
44. Vielstich, W., Lamm, A., Gasteiger, H. A., “Handbook of Fuel Cells – Fundamentals, Technology and Applications” , John Wiley & Sons, 2003.
45. Xiaomei, Q., Maria, F.S., “Activity and stability of Cu-CeO2 catalysts in high-temperature water-gas shift for fuel-cell applications,” Industrial and Engineering Chemistry Research, Vol.43, pp.3055-3062, 2004.
46. Yua, W., Ohmoria, T., Yamamotoa, T., Endoa, A., Nakaiwaa, M., Hayakawaa T., Itoha, N., “Simulation of a porous ceramic membrane reactor for hydrogen production,” International Journal of Hydrogen Energy, Vol.30, pp.1071-1079, 2005.
47. 崔志剛 “鈀薄膜對氫氣在銅鋅觸媒上的吸附作用”,長庚大學碩士論文,化工與材料工程研究所,2001。
48. 潘建文 “鈀薄膜反應器對甲醇水蒸汽重組反應之動力學研究”,長庚大學碩士論文,化工與材料工程研究所, 2001。
49. 蔡聖權 “甲醇水蒸汽重組在鈀膜反應器的數學與電腦模擬”,國立臺灣大學碩士論文,化學工程學研究所,2001。
50. 林志宇 “甲醇蒸汽重組之薄膜反應器:單套管反應器之實驗”,大同大學碩士論文,化學工程研究所,2003。
51. 張耿榮 “甲醇蒸汽重組之薄膜反應器:單套管反應器之數據回歸與模擬”,大同大學碩士論文,化學工程研究所,2003。
52. 許新圻 “混合氣中氫氣在鈀膜滲透現象研究”,長庚大學碩士論文,化工與材料工程研究所,2003。
53. 楊紹民 “甲醇水蒸汽重組反應器之最適化設計與操作”,大同大學碩士論文,化學工程研究所,2003。
54. 陳維新 “能源概論(三版)”,高立圖書有限公司,2008年2月。
55. 環保署 http://www.epa.gov.tw/